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Abstract
In recent years, generative adversarial networks
(GANs) have gained attention for their ability to
generate realistic images, despite being notori-
ously difficult to train. On the other hand, dif-
fusion models have emerged as a promising al-
ternative, offering stable training processes and
avoiding mode collapse issues; however, their
generation process is computationally expensive.
To overcome this problem, Song et al. (2023)
proposed consistency models (CMs) that are op-
timized through a novel consistency constraint
induced by the underlying diffusion process. In
this paper, we show that the same consistency
constraint can be used to stabilize the training
of GANs and alleviate the notorious mode col-
lapse problem. In this way, we provide a method
to combine the main strengths of diffusions and
GANs while mitigating their major drawbacks.
Additionally, as the technique can also be viewed
as a method to fine-tune the consistency models
using a discriminator, its performance is expected
to outperform CM in general. We provide prelim-
inary empirical results on MNIST to corroborate
our claims.

1. Introduction

Generative adversarial networks (Goodfellow et al., 2014;
Brock et al., 2019; Karras et al., 2021) have made re-
markable success in generating high-resolution images that
closely resemble real photos. However, practical imple-
mentation of generative adversarial networks (GANs) often
encounters several challenges, such as non-convergence,
training instability, and mode collapse, where the generated
outputs become repetitive or limited in variation (Good-
fellow, 2016; Arjovsky & Bottou, 2017; Mescheder et al.,
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2018). To address these challenges, many theoretical and
empirical attempts have been made including: enhancing
network architectures (Mescheder et al., 2017; Arjovsky
& Bottou, 2017; Li et al., 2017b), developing theoretical
insights into GAN training dynamics (Nowozin et al., 2016),
devising new objective functions (Nowozin et al., 2016; Ar-
jovsky et al., 2017a; Zheng & Zhou, 2021), and incorporat-
ing mappings from data to latent representations (Donahue
et al., 2017; Dumoulin et al., 2017; Li et al., 2017a).

Recently, diffusion-based generative models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a;b;
2023) have gained increasing attention and many impressive
breakthroughs have been made (Croitoru et al., 2023) in
generating images (Ho et al., 2020; Song et al., 2021a;b;
Rombach et al., 2022; Song et al., 2023), audios (Kong
et al., 2021; Yang et al., 2023) and videos (Ho et al.,
2022). Due to some inherent properties, diffusion models
are relatively easier to train and do not suffer from those
common training difficulties of GANs. In contrast, its
generation process involves iteratively applying denoising
steps to progressively transform noise into data samples
(Ho et al., 2020) or solving a complex ODE system
using an iterative solver (Song et al., 2021b), which is
computationally expensive. To alleviate this difficulty,
Song et al. (2023) proposed consistency models (CMs). By
adopting a novel local consistency constraint, the model
can be either distilled from a pre-trained diffusion model
or trained from scratch, enabling a single-step generation
process.

In this paper, we introduce a novel approach that leverages
the consistency constraint to enhance the training stability of
GANs and overcome the well-known issue of mode collapse.
Our method involves utilizing a possibly under-trained dif-
fusion model as a prototype and enforces consistency con-
straints to ensure that the generator produces outputs similar
to those of the diffusion model. In this way, we provide
a method to combine the main strengths of diffusions and
GANs while mitigating their major drawbacks. Moreover,
this technique can be seen as a means of fine-tuning the
CMs by integrating a discriminator, thereby potentially sur-
passing the performance of CMs in general. Our claims are
supported by the preliminary empirical study conducted on
MNIST datasets.
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2. Preliminary

2.1. Generative adversarial networks

Generative adversarial networks (Goodfellow et al., 2014)
are a family of generative models that learn a data distri-
bution pdata by establishing a min-max game between two
neural networks: a generator G and a discriminator D.

The generator G is expected to take a random noise vector
z sampled from some prior distribution pprior (typically a
spherical Gaussian distribution) and output a fake sample
G(z) lying in the support of pdata. A discriminator D is
simultaneously trained to distinguish G(z) from real data x.
Specifically, D is optimized to correctly distinguish the fake
samples generated by G from real training samples while
G is trained to generate more realistic samples to fool D.
The relationship between D and G can be characterized by
a min-max objective function:

min
G

max
D

Ex∼pdata

[
logD(x)

]
+ Ez∼pprior

[
log
(
1−D(G(z))

)]
. (1)

In practice, the optimization of GANs is usually unstable
and experiences the gradient vanishing problem; as a re-
sult, the objective function (1) is often modified to improve
the stability and performance of GANs (Goodfellow et al.,
2014; Arjovsky et al., 2017b; Miyato et al., 2018; Fedus
et al., 2018) while the general idea behind the competitive
dynamic between G and D remains the same.

Another common problem in GANs is mode collapse, where
the generator barely produces a small set of outputs (Good-
fellow, 2016; Arjovsky & Bottou, 2017; Mescheder et al.,
2018). This happens because the generator G is trained to
find the output that seems most plausible to the discrimina-
tor. Once G starts generating the same output (or a small
set of outputs) consistently, the discriminator D may choose
to remember this output and always reject it, which could
get D stuck at a local optimum. As a result, for the next
iteration, G could find the most plausible output forD easily
while D fails to effectively improve its learning to escape
this predicament. Consequently, the generator and discrimi-
nator end up cycling through a limited range of outputs.

In Section 3, we will show that the challenges mentioned
earlier can be significantly mitigated by incorporating the
consistency constraint (Song et al., 2023). This constraint
is enforced by leveraging a pretrained diffusion model as
a “prior” model, ensuring that the generator G remains in
proximity to the prior and consistently generates diverse
outputs. Thus, training becomes more stable and mode
collapse is effectively avoided.

2.2. Probability flow ODE and consistency models

The probability Flow (PF) ODE and consistency models
(CMs) are two families of generative models that are closely
related to the continuous-time diffusion models (Song et al.,
2021b). Diffusion models generate data by iteratively intro-
ducing Gaussian perturbations to the input data, gradually
transforming it into noise, and subsequently generating sam-
ples from the noise through a series of sequential denoising
steps. Given data distribution pdata, the forward perturba-
tion is characterized by a stochastic differential equation:

dxt = µ(xt, t) dt+ σ(t) dwt, (2)

for t ∈ [0, T ] and T is a fixed positive constant. µ(·, ·)
and σ(t) denote the drift and diffusion coefficients while
{wt}t∈[0,T ] is the standard Brownian motion. In this paper,
we adopt the same configuration as Song et al.’s, where
µ(x, t) = 0 and σ(t) =

√
2t. When T is sufficiently

large, xT can be approximately seen as a sample follow-
ing N (0, T 2I). Let pt denote the distribution of xt (thus,
p0 = pdata and pT ≈ N (0, T 2I)). Song et al. (2021b)
proved that the solution x̃t of the ODE:

dx̃t =
[
− t∇ log pt(x̃t)

]
dt with x̃T ∼ pT (x̃T ) (3)

is also distributed according to pt, where the ODE in (3) is
called the PF-ODE. Here, ∇ log pt(xt) is the score func-
tion of pt(xt) and can be empirically estimated by a neural
network sφ(xt, t) which is notably easy to train due to the
stable training process. (Readers may refer to (Song et al.,
2021b) for its training details.) With a well-trained sφ(xt, t),
we then can plug it into (3) and solve the PF-ODE backward
starting from x̃T ∼ N (0, T 2I) and the resulting x̃0 can be
seen as an approximate sample of pdata.

Solving PF-ODE is generally expensive, which motivates
Song et al. (2023) to propose CMs. Specifically, they train
a neural network fθ(xt, t) that maps any point (xt, t) on
the PF-ODE trajectory to its origin (x0, 0). Then for x̃T ∼
N (0, T 2I), fθ(xT , T ) is an approximate sample of pdata

and the iterative ODE solving process is avoided. To train fθ ,
they discretize interval [0, T ] into N − 1 sub-intervals with
boundaries 0 = t1 < t2 < · · · < tN = T and adopt a
special model architecture so that fθ(x0, 0) = x0. Then fθ
is trained to minimize a consistency distillation loss:

LCD(θ, θ̄) = E
[
λ(tn)

∥∥fθ(xtn+1 , tn+1)− fθ̄(x̂tn , tn)
∥∥2

2

]
(4)

where expectation is taken with respect to x ∼ pdata, n ∼
U [[1, N − 1]], xtn+1 ∼ N (x; t2n+1I).1 Here, U [[1, N − 1]]
denotes a uniform distribution over {1, 2, · · · , N − 1}.
x̂tn is the solution at step tn of the PF-ODE trajectory

1We only consider training CMs by distillation.
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through (xtn+1
, tn+1) and can be estimated through an Eu-

ler method starting from (xtn+1 , tn+1) with a pre-trained sφ.
λ(·) ∈ R+ is a positive weighting function and θ̄ denotes a
running average of the past values of θ.

To see why LCD works, assume that fθ is well-trained and
fθ(xtn , tn) = fθ(xtn+1

, tn+1) for n ∈ {1, 2, . . . , N − 1}.
Applying the equality recursively starting from t1 yields
x0 = fθ(xt1 , t1) = · · · = fθ(xtN , tN ). Thus, by mini-
mizing LCD, fθ(x, t) is trained to return the origin x0 of
the PF-ODE trajectory for all (x, t) along the trajectory.
Then, by sampling from x̃T ∼ N (0, T 2I) and evaluating
fθ(xT , T ), CM generates an approximate sample of pdata

in one step.

We would like to note that fast sampling of CMs comes with
a trade-off in output quality since the pre-trained PF-ODE
model cannot be perfectly distilled in general. Additionally,
the performance of CMs heavily depends on the quality
of the pre-trained PF-ODE model, emphasizing the sig-
nificance of a well-trained model for achieving desirable
results. In the subsequent section, we will demonstrate that
the performance of CMs can be enhanced by incorporating
an adversarial training setting. This approach not only im-
proves the performance of CMs but also alleviates concerns
regarding the imperfect training of the PF-ODE model.

3. Approach

In this section, we introduce a method that can serve as
both a technique to enhance the training stability of GANs
and improve the performance of CMs. The approach as-
sumes the accessibility to a pre-trained PF-ODE model (not
necessarily to be perfectly trained), which will serve as a
prototype of the generator G (from the view of stabilizing
GAN’s training) or the model to be distilled (from the view
of enhancing CMs). To emphasize the reliance on the consis-
tency constraint in CMs, we name our approach CM-GAN.
We will begin by presenting our method as a fine-tuning
technique for CMs, which provides a clearer understanding
and stronger motivation for our work.2

Consider the distillation process of CMs that minimizes
LCD in (4). Due to a possibly imperfect training of CM
and the pretrained PF-ODE model, fθ could not output a
good enough approximate sample of pdata. To fix this issue,
we can adopt a GAN structure by simultaneously training
a discriminator D to correct the outputs of fθ(xtn , tn) for
xtn ∼ pt(xtn) and n ∼ U [[1, N − 1]]. In this way, the error
signal from D guides fθ to produce more realistic outputs
while the consistency constraints regularize the corrected
output to stay in the neighbour of the one induced by the

2Applying the method on a trained CM is not a requirement. In-
stead, it can be incorporated from the initial stages of CM training
as demonstrated in Section 4.

t1 t2 t3 · · ·

Correction
made by D The corrected value

propagates due to the
consistency constraint.

(regularized by
the consistency
constraint)

The trajectory learnt by the
pretrained PF-ODE model

Figure 1: Discriminator D corrects the outputs of generator
G while the consistency constraint ensures that the corrected
output stays close to the one induced by the PF-ODE.

PF-ODE (the ground truth in the distillation of CMs).

To see how discriminator D helps the training of fθ, con-
sider the training dynamic involving the time step t1 = 0
(see Fig 1). The consistency constraint ‖fθ(xt2 , t2) −
fθ̄(xt1 , t1)‖2 enforces fθ(xt2 , t2) to stay close to the ori-
gin of the PF-ODE trajectory fθ(xt1 , t1) while D provides
additional correction signal to make fθ(xt2 , t2) be more
realistic. We apply this idea recursively and obtain the fol-
lowing training objective:

min
fθ

max
D

E
[

logD(x)
]
+E
[

log
(

1−D
(
fθ(xtn , tn)

))]
+LCD(θ, θ̄) (5)

where x ∼ pdata(x), n ∼ U [[1, N − 1]], xt ∼ pt(xt). The
weighting function is set to

λ(tn;α, γ, I) = exp
(
α(ti − T ) · (1− γI)

)
, (6)

where α ≥ 0, γ ∈ [0, 1] and I denotes the number of train-
ing iterations so far. Here α controls the overall strength
of the consistency constraints. For a close-to-zero α, the
weights approach one, injecting a stronger consistency con-
straint. This selection enhances training stability for the
generator, although it comes at the cost of limiting its ability
to refine outputs by incorporating error correction signals
from the discriminator. Conversely, increasing the value of
α provides the generator with greater flexibility to enhance
its performance, which however comes at the expense of los-
ing training stability. (In Section 4, we provide evidence of
a sweet spot where the optimal balance between flexibility
and stability can be achieved.)

Additionally, the weighting function progressively reduces
the emphasis on consistency constraints as training proceeds
(with the transition speed controlled by γ). As a result, it
allows the initial stage of training to resemble that of CMs,
enabling fast learning and ensuring stability, and provides
the generator with greater flexibility to refine its outputs
as training advances. To further improve training stability,
we adopt a weight change mechanism that gradually slows
down as ti approaches T (and for ti = T , the weight equals
one throughout the training).
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Figure 2: The images generated by CM (first row) and CM-GAN (second row).

The proposed approach can also be seen as a method to stabi-
lize the training of GAN. In particular, the approach utilizes
a generator G that has the same architecture as CM’s (Song
et al., 2023), where G(ε) = fθ(ε, T ) and ε ∼ N (0, T 2I).
Apart from the main generation task, G is also trained to
complete a sequence of auxiliary denoising tasks with vari-
ous levels of noise added. The outputs are then regularized
by consistency constraints in combination with a pre-trained
PF-ODE model. In this way, the pre-trained model serves
as a prototype of G where the consistency constraints re-
quire G(ε) to be close to x̃0(ε), the origin of the PF-ODE
trajectory ending with (ε, T ). This requirement excludes
the possibility of the generator fooling the discriminator
by utilizing a single most plausible sample for all input ε.
Instead, the generator is compelled to generate distinct and
appropriate outputs for different ε to meet the additional
closeness constraint. Consequently, this approach alleviates
the mode collapse problem, ensuring a more diverse set of
generated samples. Moreover, the introduced consistency
constraints discourage the generator from blindly follow-
ing the error signal provided by the discriminator. Thereby,
training stability is improved, as the generator is less likely
to be swayed arbitrarily by the discriminator’s feedback.

4. Experiments

In this section, we empirically demonstrate the effectiveness
of CM-GAN on the MNIST dataset (LeCun et al., 2010).

Experimental Settings and implementation. For the gen-
erator G, we adopt the generator architecture (U-Net) from
Song et al. (2023). Our implementation is based on the
consistency distillation method of CMs (Song et al., 2023),
where we use a pretrained EDM diffusion model (Karras
et al., 2022) as the pretrained PF-ODE model.

To establish an adversarial training setup, we adopt the train-
ing objective in (5). Unless otherwise specified, the weight-
ing function hyperparameters γ = 0.99995 and α = 0.025.
The discriminator is built upon the ResNet-18 architecture,
utilizing only the first two blocks.

CM-GAN improves the performance of CM. Our discus-
sion in Section 3 suggests that CM-GAN can be seen as
a fine-tuning method to boost the performance of the CM
models as the discriminator enforces the CM model to gen-
erate samples toward the true data distribution. In Fig 2,
we present the outputs of CM (first row) and CM-GAN

(second row) with the shared input ε for each column. The
figure shows that CM-GAN can effectively correct out-of-
distribution samples. Additionally, due to the consistency
constraints, the outputs of the two models are expected to be
similar given the same input. Indeed, in Fig 2, we observe
that CM-GAN successfully enhances image quality while
largely preserving the distinct style of the numbers.

CM-GAN stabilizes the training of GAN. In Section 3,
we mentioned that, from the perspective of GAN, CM-GAN
is expected to stabilize the training process and there is sup-
posed to be a sweet spot for α (defined in (6)). In Fig 3, we
present the outputs of CM-GAN for different selections of α.
It is observed that for small values of α (α = 0.005, 0.01),
the strong consistency constraints prioritize similarity to the
pretrained EDM model, limiting the generator’s flexibility to
refine its outputs based on the discriminator’s feedback. On
the other hand, when α = 0.25, the regularization applied
to the generator becomes too weak, leading to an unstable
training dynamic and a decrease in image quality. (In Ap-
pendix A, we show the dynamics become further unstable
when training the model in a pure GAN setting.) The best
performance is observed when setting α = 0.025, which
strikes an optimal balance between the generator’s training
flexibility and stability.

Figure 3: The images generated by CM-GAN with different
choices of α. From row 1-4: α = 0.005, 0.01, 0.025, 0.25.

5. Conclusion

In this paper, we presented CM-GAN, a technique that en-
hances the training stability of GANs while also acting as a
fine-tuning method for CMs. Preliminary empirical study
was conducted using the MNIST dataset to demonstrate its
effectiveness. Our future work aims to enhance CM-GAN
by better leveraging the consistency constraints to eliminate
the need of a pretrained PF-ODE model. We also plan to
evaluate CM-GAN on other datasets and applications.
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A. Additional empirical results
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Figure 4: The dynamics of the losses associated with the generator G (or fθ in CM-GAN) and the discriminator D.

Figure 5: The images generated by GAN (first row) and CM-GAN (second row) as the training proceeds. The
images are sampled every 3K training iterations until 30K iterations.

In Section 4, we show that overly weak consistency constraints fail to offer enough regularization to stabilize the training
dynamics. In order to inject the consistency constraints and present how its strength affects the generator’s performance, the
generators have to perform auxiliary multi-scale denoising tasks, which is different from the regular GANs setting.

In order to make our results more convincing, we provide additional empirical evidence with a classical GAN configuration
that is not equipped with the auxiliary denoising tasks. (The generator of GAN has the same architecture as CM-GAN’s and
it takes an input ε that has the same size as the output.)

Fig 4 plots the dynamics of the losses associated with the generator G (or fθ in CM-GAN) and the discriminator D. In
particular, for GAN,

lossG = Ex∼pdata

[
logD(x)

]
+ Eε∼N (0,T 2I)

[
log
(
1−D(G(ε))

)]
(7)

and

lossD = Eε∼N (0,T 2I)
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For CM-GAN, it involves multi-scale denoising, and its losses become
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A large lossG (or lossfθ ) indicates the discriminator is overly strong and the generator cannot find a way to fool it and thus
cannot be effectively optimized. In contrast, a large lossD suggests that the discriminator is too weak to provide useful
error signals that guide the generator to refine its outputs. In practice, we desire both lossG (or lossfθ ) and lossD to stay at
intermediate values to enable a successful training.

From Fig 4, we observe that the training of GAN is very unstable, especially for the first 25K iterations. As a result, the
generator cannot produce recognizable digits as presented in Fig 5. We argue that the superficially stabler training dynamics
since 25K iterations were largely due to the gradient vanishing problem. As suggested by the large lossG (and small lossD),
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Figure 6: The odd columns plot the images generated by GAN with two randomly picked inputs ε (the first and
second rows, respectively) for different numbers of training iterations. From left to right, the images were sampled
every 1K training iterations, starting from iteration 26K and continuing until iteration 30K. The even columns
display the differences between the images on their two sides. The close-to-zero differences (as suggested by the
black patches) indicate that the GAN’s outputs are nearly unchanged.

the discriminator is overly strong in the first 22K training iterations. The unmatched performances of the generator G and
discriminator D result in the overfitting of D, making it easier for G to find outputs that can deceive D and balance their
losses (during the 22K-26K iterations). However, the overfitted D cannot provide strong enough error gradients to refine the
outputs of G. As a result, the outputs of G remain largely unchanged since 26K iterations as shown in Fig 6.

In contrast, the training of CM-GAN is fairly stable throughout the entire process, and the generator consistently produces
high quality images.


