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Statement of Contributions

This thesis consists, in part, of the author’s previous work:

• [64], [65]. These works characterize the sufficient and necessary conditions for both
diffusion models and diffusion bridge models to preserve isometry group invarainces
present in data distributions. The theoretical proofs in the cited works are attributed
to Haoye Lu, who built up my initial sketches into rigorous theorems. Writing of
these works was done equally by Haoye and myself. Both, Haoye and I contributed
a significant amount of time to model implementation and evaluation. Specifically,
in terms of model development in [64], I primarily implemented: SPDM+WT and
SPDM+REG having proposed the regularization method, see [65, Appx. C]; I fixed
the FID metric evaluation of SP-GAN by [3]; and for [65] I implemented (DDBM)
SPDM+WT1 and all other model comparisons for Table 5.2 and Table 5.3 excluding
(DDBM) SPDM+FA for the LYSTO and ANHIR datasets which were implemented
by Haoye alone.

• In this thesis various theoretical results are presented; those that are not my work
appear with the relevant citation either in the statement block or nearby. The pri-
mary theoretical contributions made in this work are the proof of Lemma 1, and
both Corollary 1 and Corollary 3. Outside of these primary results, various minor
contributions serve to link together the different sections and aid in motivating the
use of select techniques; e.g., within Section 3.3 a brief study of the variance of the
trace estimate is given to motivate the use of the Rademacher distribution for sam-
pling, following which we introduce a stochastic scaler term that proved valuable in
stabilizing model training. Empirical contributions are detailed at the end of each
section. Lastly, much of the work around motion planning is build incrementally
atop existing work, which are cited whenever an existing technique is introduced,
barring some rederivation of results. The major contribution of this section is in the
exploratory work combining reflected diffusion models with motion planning.

1This model was not presented in the final paper.
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Abstract

This thesis delves into the theoretical foundations, extensions, and applications of diffusion
modeling in generative tasks. Diffusion models have garnered significant attention due to
their stability during training and superior performance compared to competing methods.

In an attempt to make this work approachable for those not already familiar with diffu-
sion, we begin by developing diffusion models from the ground up, starting with continuous
diffusion processes and later deriving popular discrete diffusion models via discretization,
providing insights into their mechanics. Motivated by work in the physical sciences, where
datasets reside on curved surfaces, we describe extensions to Riemannian manifolds by
redefining Brownian motion in these domains and formulating stochastic differential equa-
tions that describe continuous diffusion processes on manifolds. In much the same vein, as
many real-world datasets are constrained within specific boundaries, we explore reflected
diffusion processes. These processes describe diffusion processes that are constrained to a
bounded region without absorption at the boundary, ensuring that generated data remains
within a desired support. At the end of each of these chapters, we address the numerous
practical challenges in training neural diffusion models on these different processes, as well
as developing a few techniques that improve training stability of such models.

Further, we investigate structure-preserving diffusion models that respect inherent sym-
metries present in data, such as rotational invariance in imaging applications. We provide
a complete characterization on the form of drift and diffusion terms required to ensure
the diffusion processes, and diffusion model, accurately preserve affine group invariances
present within target distributions. Three core techniques are discussed for achieving such
group invaraince, with each being evaluated over a set of datasets focused on applications
in Medical imaging. In closing out this section, we discuss in detail extensions of this work
to reflected diffusion processes and Riemann manifolds.

Finally, we highlight some proof-of-concept work on applying reflected diffusion models
to the domain of robotic motion planning. Focusing on generating collision-free paths for
robot navigation and multi-segment robotic arms, we demonstrate how diffusion models can
address the complexities inherent in planning under motion constraints. This application
showcases the practical utility of the extended diffusion modeling framework in solving
real-world problems.
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Chapter 1

Introduction

The central topic of this thesis is diffusion modeling, its definition, constrains, and applica-
tion to select generative modeling tasks. Considerable effort has been put into structuring
this work to include sufficient background on the underlying dynamics that govern diffu-
sion models so that a reader who follows the chapter listings should be able to comprehend
each section without much preliminary knowledge.

In the last several years, diffusion models [91, 90, 33, 48, 102], and diffusion bridge mod-
els [16], have gained significant interest due to their relative ease of training, in comparison
to other contemporary models such as generative adversarial networks (GANs) [27] – that
commonly suffer mode collapse while offering state-of-the-art performance. Diffusion mod-
els also benefit from a rich mathematical legacy within statistical physics that characterize
the dynamics underlying various diffusion models that are commonly used in practice,
making them easier to understand and design. Thus, diffusion based methods have shown
to be attractive to not just practitioners but also mathematically minded individuals in
machine learning.

We begin in Chapter 2 by describing the fundamental mechanics on which diffusion
models operate, which is necessary for understanding some of the results given in Sec-
tion 5.1, and discuss how neural networks can be parametrized and trained using these
dynamics. Chapter 4 contains discussion around a constrained version of diffusion that
offers several theoretical advantages for applications seeking to use diffusion for optimiza-
tion tasks, which are touched on in Chapter 6. Lastly, the Appendix contains many of the
proof contributions, additional experimental results, and qualitative sample comparison
across various empirical experiments in the earlier chapters. Much of the mathematical
formalisms and definitions that are used throughout the text are relegated to Appendix A
and should be consulted if the reader is unsure of any unfamiliar notations.

To assist the reader in navigating this thesis and to allow them to allocate their attention
to chapters more inline with their interests, a chapter dependency graph is provided in
Fig. 1.1. This map illustrates the topic dependence between chapters and sections.
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Chapter 2

Diffusion models

Diffusion based (generative) models have emerged as a highly capable neural framework for
image synthesis [33, 34, 50, 74, 90, 48, 83], audio generation, robotic motion planning [43,
8], molecule conformation [12, 35, 46, 81, 101, 102], which are stable to train in comparison
to competing methods, notably GANs [27], at the expense of training times. Informally,
diffusion models follow a noisy process where input data is gradually corrupted and the
model learns to reconstruct the original data from the noisy counterparts.

In the following section we will develop diffusion models from a (somewhat) bottom
up fashion, starting from the theoretical underpinnings of continuous diffusion models and
then recovering original discrete step diffusion models via discretization; this being what I
feel to be a more natural derivation albeit one not commonly shown. First and foremost,
we begin this chapter by formalizing the noise used within diffusion processes.

2.1 Brownian motion

The concept of Brownian motion, also called a Wiener process – the result of considering
a continuous random walk, must be understood to properly characterize the dynamics
governing diffusion models. Consequently, we lead by formally defining Brownian motion
over Euclidean space.

Definition 1 (Wiener process). Let (Ω,B, P ) be a probability space. A (one-dimensional)
Wiener process (or Brownian motion) is a stochastic process {Bt}t≥0, for t ∈ R≥0, that
satisfy:

1. B0 = 0;
2. Almost surely t → Bt is continuous in t; i.e., the Wiener process is a continuous

stochastic process where for all t ≥ 0

P ({z ∈ Ω | lim
s→t
|Bs(z)−Bt(z)|} = 0) = 1;

3



Figure 2.1: An illustration of 1000 steps of random walk originating from an orange point
in the plane (black) and this same random walk viewed as a time series trajectory (blue).

3. The process {Bt}t has stationary (fixed) independent increments; with the increment
constraint Bt+s − Bs ∼ N (0, σt), with diffusion coefficient σ. (We assume σ = 1
throughout the remainder of the text.)

While the above axiomatic definition of Brownian motion is constructive and easy
to work with, it may not be clear (as it wasn’t when historically introduced – people
questioned if such a model was justifiable in reality) that any processes exists that realizes
these conditions. As it turns out, such a process originates as the solution to the (stochastic)
heat equation.

For those readers not familiar with the effects of Brownian motion, a trajectory of a
particle in R2 evolving through time under Brownian motion is simulated for 1000 discrete
steps and visualized in Fig. 2.1. As can be seen from the figure, trajectories following
Brownian motion are very rough, in fact such trajectories are nowhere differentiable, and
as such are most frequently studied using probabilistic concentration arguments.

Background on the heat kernel. From [28], recall the heat kernel in Rd is the (unique)
positive solution of, u : [0, T ]× Rd → R, of the time varying Cauchy problem{

∂u(t,x)
∂t

= ∇ · ∇u(t, x)
u(0, x) = δ(x− x0),

4



with x0 ∈ Rd being the initial starting point, and δ(x− x0) is a Dirac density centered at
x0. Under this probabilistic view, we can derive the solution to this problem of the form

u(t, x) =

∫
Rd

p(t, x, y)δ(x− y) dy,

in particular, in the Euclidean setting, it is know the Gaussian transition density

p(t, x, y) =
1

(4πt)d/2
exp

{
− ∥x− y∥

2
2

4t

}
satisfies this problem.

Brownian motion and SDEs The most fundamental diffusion processes, is that based
on the heat equation, which in Euclidean space takes the form of a Stochastic Differential
Equation (SDE). Specifically, consider a sequence (

−→
X t)

T
t≥0 of time-indexed random variables

in Rd with
−→
X 0 ∼ p0(x) = δ(x − x0) defined up till some time T > 0. The Fokker-Planck

equation (forward Kolmogorov equation) [49, 79, 76, 87] describes how the probability
distribution of

−→
X t, denoted pt, evolves from p0 under Brownian motion, in this case with

covariance (time paramteizer) Σt : [0,∞)→ Rd×d, as

∂

∂t
pt(
−→xt ) =

d∑
i,j

∂2

∂xi∂xj

[
[ΣtΣ

⊺
t ]i,j
2

pt(
−→xt )

]

with the dynamics of
−→
Xt expressed as the (Ito) SDE

d
−→
X t = Σt d

−→
Bt,

where (
−→
Bt)t≥0 is a d dimensional Brownian motion resulting from the heat transition kernel,

that describes the dynamics of the random variables in space. Corresponding to this is a
time reverse (backward) SDE, stated in terms of

←−
X t =

−→
X T−t,

d
←−
X t = −

1

2
ΣtΣ

⊺
t∇x log pt(

←−
X t) dt+ Σt d

←−
Bt

that transports
−→
X T backwards in time to

−→
X 0 (in a point-wise sense).
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2.2 Diffusion processes

To begin, we will introduce (continuous) diffusion models, also referred to as score based
generative models - the only distinction between these naming conventions being the chosen
model paramterization outlined in Section 2.3, defined over Euclidean space following the
works of [33, 90, 92, 48, 54]. To expedite the delivery, we will only detail the unconditional
diffusion setting; the conditional setting is not a difficult extension and will be used without
explicit introduction later on in the text.

Continuous diffusion processes The design and application of diffusion neural models
is based on the central assumption1 that for a given (ground truth) distribution p0, with
mean µ0 and standard deviation Σ0, if we progressively add Gaussian noise ϵ ∼ N (µt,Σt),
for t = 1, . . . , T , with ΣT ≻≻ Σ0

2 the resulting mollified distribution pT is approximately
normal; i.e., pT (x) ≈ N (x;µT ,ΣT ).

This idea of gradually corrupting data can be formalized in terms of SDEs, as introduced
above in Section 2.1. In particular, let (

−→
X t)

T
t≥0 denote a sequence of time-indexed random

variables in Rd such that Xt ∼ pt, where pt is the marginal distribution induced by an
underlying SDE of the form

d
−→
X t = µ(

−→
X t, t) dt+ Σ(

−→
X t, t) d

−→
Bt,

where µ : Rd × [0, T ] → Rd and Σ : Rd × [0, T ] → Rd×d are prescribed drift and diffusion
coefficients, commonly used value are discussed in [92, 48]. As outlined in Section 2.1,
the Fokker-Planck equation (forward Kolmogorov equation) describes how the probability
distribution of Xt evolves starting from p0 through the dynamics described by a general
SDE of the forgoing form, with

∂

∂t
pt(xt) = −

d∑
i=1

∂

∂xi
[µi(xt, t)pt(xt)] +

d∑
i,j

∂2

∂xi∂xj

[
[Σ(xt, t)Σ(xt, t)

⊺]i,j
2

pt(xt)

]
, (2.1)

an approximation, as written, that is accurate up to the first two modes. Correspondingly
there exists a unique family of probability transition kernels p(

−→
X t|
−→
X s), for 0 ≤ t < s ≤ T ;

1I use the term “assumption” here since often experimentally this property is not checked and the time
scale of the diffusion process is heuristically determined.

2The matrix inequality expresses that ΣT − Σ0 is positive definite with a large positive lower bound.
Where “large” here is dependent on the covariance of the data distribution, which is often experimentally
estimated.
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there is a special case when µ and Σ are affine (e.g., scalar matrices) where the transition
kernels remain always Gaussian and can be derived in closed form due to (2.1) becoming
exact. (Derivation of this is postponed till Section 2.2, likewise, for the ensuing reverse
direction.)

Provided the initial, ground truth, distribution p0 is sufficiently conditioned [1], there
exists a time-reversed (also called backward) process from t = T to t = 0 given as

d
←−
X t =

[
µ(
←−
X t, t)−

1

2
∇ · [Σ(

←−
X t, t)Σ(

←−
X t, t)

⊺] (2.2)

− 1

2
Σ(
←−
X t, t)Σ(

←−
X t, t)

⊺∇x log pt(
←−
X t)

]
dt+ Σ(

←−
X t, t) d

←−
Bt.

where ∇ · Σ(Xt, t) = (∇ · g1(Xt, t), . . . ,∇ · gd(Xt, t)) with ∇ · gi denoting the divergence
of gi : Rd × [0, T ]→ Rd. As above, this backwards SDE characterizes how the probability
distribution pT , which recall we take pT ∼ N (0,ΣT ), is transported towards p0; with

∂

∂x
pt(
←−xt ) = −µ(←−xt , t)

∂

∂x
pt
←−xt )−

Σ(←−xt , t)Σ(←−xt , t)⊺

2

d∑
i,j

∂2

∂xi, ∂xj
pt(
←−xt ).

For the remainder of this text, whenever we refer to a “diffusion process,” we mean a
stochastic process that can be described via the above dynamics.

Affine continuous diffusion processes Within the aforementioned affine case, which
is the setting used in practice [48], we take µ(Xt, t) = AtXt + bt for At ∈ Rd×d, bt ∈ Rd,
Σ(Xt, t) = σtσ

⊺
t with σt ∈ Rd, the (forward) transition kernels, t ≥ s, via [87, Theo-

rem 5.10], are of the following general form:

∂

∂t
p(
−→
X t|
−→
X s) = −

d∑
i=1

∂

∂xi
[µi(
−→
X t, t)pt(

−→
X t|
−→
X s)]

+
d∑
i,j

∂2

∂xi∂xj

[
[Σ(
−→
X t, t)Σ(

−→
X t, t)

⊺]i,j
2

pt(
−→
X t|
−→
X s)

]
,

= −
d∑
i=1

∂

∂xi
([At
−→
X t + bt]pt(

−→
X t|
−→
X s))

+
d∑
i,j

[ΣtΣ
⊺
t ]i,j
2

∂2

∂xi∂xj

[
pt(
−→
X t|
−→
X s)

]
.
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Making use of the affine assumptions, using [87, Eq. 5.50, Eq. 5.51], we can compute the
mean, ηt = E[

−→
X t], and covariance Ht = E[(

−→
X t−ηt)(

−→
X t−ηt)⊺] of p(Xt|Xs) to be respectively

d

dt
ηt = E[µ(ηt, t)]

= Atηt + bt,

and
d

dt
Ht = E[µ(

−→
X t, t)(

−→
X t − ηt)⊺] + E[(

−→
X t − ηt)µ(

−→
X t, t)

⊺] + E[ΣtΣ
⊺
t ]

= AtHt +HtA
⊺
t + ΣtΣ

⊺
t .

Then given the initial conditions ηs =
−→
X s and Hs = 0, we can derive the general conditional

solutions to these equations, namely

ηt|s = Φt,s

−→
X s +

∫ t

s

Φt,τbτ dτ

and

Ht|s =

∫ t

s

Φt,τΣτΣ
⊺
τΦ
⊺
t,τ dτ,

where Φt,s is the (continuous) Markov transition matrix (See [87] for characterization),
which in general has no closed form and even for the affine case will depend on the form of
At. Now, this solution is an affine transformation of Brownian motion (Gaussian process)
it must follow a Gaussian distribution itself, namely;

p(
−→
X t|
−→
X s) = N (

−→
X t; ηt|s,Ht|s).

A natural question to then ask, the answer of which would simplify numerical simulations,
is under what values of µt, and Σt does a closed form solution exist? As it turns out, if
At, bt, and Σt are smooth (bounded) scalar functions, i.e., At = at : [0, T ] → R, bt = 0,
and Σt = σt : [0, T ] → R≥0, then we can solve the transition matrix in closed form
using the method of integrating factors; in particular, for the drift and diffusion terms
a(t), σ(t) : [0, T ] → R (smooth), picking the integrating factor ut = exp{−

∫ t
−∞ a(τ) dτ}

gives the transition matrix

Φt|s = exp

{∫ t

s

a(τ) dτ

}
,

and the transition kernel above reduces to

p(
−→
X t|
−→
X s) = N

(
−→
X t; Φt|s

−→
X s, I

∫ t

s

Φ2
τ |sσ(τ)

2 dτ

)
.
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Connection to discrete diffusion processes We are now ready to derive the connec-
tion between continuous diffusion models and the commonly used discrete frameworks.

In order to simplify the delivery, we will focus on the DDPM framework [33] (a special
case of the later DDIM framework [92] – which introduced non-Markovian forward processes
making it harder to recover going from the continuous to discrete case). In practice,
as discussed more in Section 2.3, the most commonly used drift and diffusion coefficient
selection is a(t) = 1

2
d
dt
ln(1−β(t)) and σ(t) =

√
− d
dt
ln(1− β(t)), where β(t) : [0, T ]→ [0, 1]

is a smooth increasing function. Then under N discretization steps of the (forwards SDE
or) transition kernel, and time partition 0 = t1 < t2 < · · · < tN−1 < tN = T for step size
∆t≪ 1, we have under discretization and successive Taylor series approximation

Φti|ti−1
=

√
1− β(ti)
1− β(ti−1)

Hti|ti−1
= 1− 1− β(ti)

1− β(ti−1)

≈
√

1− β(ti−1 +∆t), ≈ β(ti−1 +∆t)− β(ti−1)
1− β(ti−1)

≈ β(ti−1 +∆t)

and we approximately recover the formulation given in [33, 90] with forwards noising kernels

pT (
−→
X T |
−→
X 0) =

T∏
i=1

pt(
−→
X ti |
−→
X ti−1

), with pti(
−→
X ti |
−→
X ti−1

) = N (
−→
X ti ;

√
1− βti

−→
X ti−1

, βtiI).

(2.3)

Likewise, for the time reversed SDE we have the backwards Markov chain

pT (
←−
X0) =

T∏
i=1

pti(
←−
X ti−1

|
←−
X ti)

where backwards transition densities depend on the score function, which is not known in
advance. This is the central learning objective proposed in [33], paramterizing the time-
reverse process with pθ(

←−
X ti−1

|
←−
X ti) = N (

←−
X ti−1

; ηθ(
←−
X ti , ti),Hθ(

←−
X ti , ti)); the details of the

learning task are developed below.3

3In subsequent sections, the sub-indexing of discrete time steps is suppressed and should be inferred
from context.
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2.3 Neural diffusion models

Understanding the dynamics of a diffusion process is all well and good, but unless we
can devise a method of efficiently sampling from these dynamics, they are of no practical
utility. This section is dedicated to the task of describing how diffusion processes can be
practically modeled using neural networks and trained to perform a target objective.

Model parameterization and training Continuous diffusion models, as implemented
using neural networks, are parameterized to learn a time-conditional approximation to the
Stein score sθ(Xt, t) ≈ ∇x log pt(Xt) that appears in Eq. (2.2), in order to sample from the
reverse process via (repeat) evaluation of

d←−xt = [µ(←−xt , t)− σ2(t)sθ(
←−xt , t)] dt+ σ(t) d

←−
Bt (2.4)

approximating sampling xt ∼ pt. Thus, in diffusion models, the terminal distribution pT
serves as the “initial” distribution, which for affine drift and diffusion terms converges to
a Gaussian distribution which can easily be sampled from, and transported to p0, which
is often not known analytically. In [91], this is approximated using M steps of Langevin
Metropolis-Hasting [73] to sequentially sample xt ∼ pt according to the equation4

←−xt (m) =←−xt (m−1) +
σ2
t

2
sθ(
←−xt (m−1), t) + σtz

(m)
t , z

(m)
t ∼ N (0, I), for m = 1, . . . ,M ; (2.5)

that is,←−xt ≈ ←−xt (M). In order to avoid stochasticity in sampling, the authors of [92] derived
the probability flow ODE (PF-ODE), below, as a counterpart to Eq. (2.4)

d←−xt = [µ(←−xt , t)−
σ2(t)

2
sθ(
←−xt , t)] dt

which, under the DDIM[90] framework, admits the same marginal distributions, pt, and
can thus be used to sample a trained model deterministically.

In order to train these models, we must define a suitable loss function. It was proved
in [39] the score matching (SM) objective

LSM(sθ) = Et∼U(0,T )E−→X t∼pt [∥sθ(
−→
X t, t)−∇x log pt(

−→
X t)∥22]

4The exact form of the step size in this equation will depend on the chosen forwards process parameters.
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guarantees the learned approximation will agree up to a constant factor difference. How-
ever, as pt is typically not accessible, with unknown ground-truth mean and variance,
surrogate objectives have been developed. Notably, implicit score matching (ISM)

LISM(sθ) = Et∼U(0,T )E−→X t∼pt

[
1

2
∥sθ(
−→
X t, t)∥22 +∇ · sθ(

−→
X t, t)

]
, (2.6)

where the expectation is taken w.r.t. the empirical distribution p̂t ≈ pt
5. Discussion

around ISM, and its approximation, is postponed till Section 4.2 where it is necessary.
More commonly, the equivalent denoising score matching (DSM) loss [99] is used whenever
feasible

LDSM(sθ) = EX0∼p0Et∼U(0,T )E−→X t∼pt(
−→
X t|
−→
X0)

[∥sθ(
−→
X t, t)−∇x log pt(

−→
X t|
−→
X 0)∥22] (2.7)

where pt(
−→
X t|
−→
X 0) is the forward transition probability conditioned on

−→
X 0, following the

recursive application of the diffusion transition kernel, which for affine drift, as derived in
Section 2.2, is tractable to compute unlike pt(

−→
X t). It was found in [33] that parameterizing

the learning task in terms of predicting the noise sample ϵt ∼ N (Xt; ηt
−→
X 0, Ht), using a

network ϵθ(Xt, t), opposed to the score, sθ, directly, resulted in more stable training under
the corresponding reparameterization of the loss

LϵDSM(ϵθ) = E−→
X0∼p̂0

Et∼U(0,T )Eϵ∼N (ϵt;ηt
−→
X0,Ht)

[∥ϵ− ϵθ(Xt, t)∥22];

under which the Stein score is approximated via Tweedie’s estimate [20] ϵθ(Xt, t) ≈ E[ϵ|Xt]
as

∇x log pt(Xt) ≈
−ϵθ(Xt, t)

σ2
t

.

However, as documented in [48], this method is not ideal as the inter-sample variance is
high unless the noise samples are normalized to unit variance (among other considerations).
See [48] for a more detailed discussion on diffusion model network parameterizations.

Pseudocode versions of the general training and sampling procedures of discrete diffu-
sion models are given in Algorithm 1 and Algorithm 2 respectively.

5It is common to ignore this notational difference and read all expectations as being approximated over
the given empirical data distribution.
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Algorithm 1: (Discrete) Diffusion Model Training and Sampling
Consider diffusion over Rd parameterized by θ, let p0 be the data distribution and
D the training dataset, p(xt|xt−1) the forward diffusion process (see Eq. (2.3)),
pθ(xt−1|xt) is the reverse process, T the time horizon, and η > 0 is the learning
rate.
Data: D, T , η, θ
Result: θ

1 while training do
2 x0 ∼ D
3 ti ∼ U{1, . . . , T}
4 for t = 1, . . . , ti do
5 xt ∼ p(xt|xt−1) ; /* Forward diffusion step */

6 x̂0 ∼ pθ(x0|xti) ; /* Approx sample reverse process from xt1 */
7 L ← LDSM(θ) ; /* Given x0 and x̂0 */
8 θ ← θ − η∇θL
9 return θ

Algorithm 2: Sampling from (Discrete) Diffusion Model
After training, samples are generated using the learned reverse diffusion process
pθ(xt−1|xt), resulting in an approximate sample x̂0.
Data: θ, T
Result: x̂0

1 xT ∼ N (0, I)
2 for t = T, . . . , 1 do
3 x̂t−1 ∼ pθ(xt−1|xt) ; /* Approx reverse diffusion step */

4 return x̂0

Noise scale selection and design One important aspect governing neural diffusion
model performance, as seen empirically and as mentioned at the start of Section 2.2, is
the chosen noise scale (i.e., the scale of drift and diffusion coefficients) used for a chosen
learning task. The study of designing noise schedules is the topic of various works [33, 50,
74, 48, 83, 57], but among these, the most dominant are the variance exploding (VE) [92]
and variance preserving (VP)[33, 90] schedules.
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Figure 2.2: Comparison of log-SNR values between four commonly used noise schedules.

To better visualize the effect different noise schedules have, in Fig. 2.2 we plot the log
signal to noise ratios (log-SNR), as popularized by [50] for analyzing these schedules, where

SNR(t) =

∏t
i=1(1− βi)

1−
∏t

i=1(1− βi)
or

σ(t)2

1− σ(t)2

quantifies the relative intensity of a (date) signal compared to the added noise, values of
the four most common DDPM noise schedules, which have equivalents in the continuous
setting, with the common parameters β0 = 0.0001, βT = 0.02, T = 1000. Then in Fig. 2.3
we illustrate the progression of these noise schedules, plotting every 50th step, on a sample
image taken from the CelebA dataset [60]. As evident from the figure, depending on which
schedule is selected, high fidelity features of the image are preserved longer than others;
in particular, in accordance with the purported design motivation, the cosine schedule [74]
adds noise more progressively than the other illustrated methods. It is for this reason the
authors suspect the schedule allowed diffusion models parameterized for noise prediction,
Eq. (2.7), to perform better than its contemporaries. With this said, we are not currently
aware of any existing analysis (theoretical or otherwise) that proposes a universally agreed
upon metric for the “optimization” of noise schedules outside of post training evaluation.
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Figure 2.3: Illustration of the noise progression of different schedulers on a random sample
from CelebA dataset. Top to bottom these follow the Linear, Quadratic, Cosine, and
Stable-Diffusion schedules.

Example: DDPM learned score field To visualize the training and sampling dynam-
ics, in the sample space sense, we train a DDPM using ISM loss and a linear noise schedule
with T = 50 over the synthetic dataset constructed in Section 5.4. Progressive samples
are drawn from the model at time steps t = 0, 20, 40, 49 along with the learned vector field
which is evaluated over a finite grid [1.5, 1.5]× [−1.5, 1.5] with cell size ∆ = 0.015. These
samples are displayed in Fig. 2.4, and shows how diffusion models transport Gaussian
samples to a learned density.

Figure 2.4: (top) Incremental samples drawn from a trained DDPM at time steps
t = 0, 20, 40, 49, and (bottom) corresponding flow visualization of learned Stein score.
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Chapter 3

Manifold diffusion models

As detailed in Chapter 2 diffusion models, in the Euclidean setting, can effectively model
complex data distribution, however, many dataset naturally originate on non-Euclidean
settings where the diffusion theory and techniques we have seen break down; e.g., data that
is constrained to Riemann manifolds prove to be difficult to learn by standard diffusion
model architectures. In response to this, diffusion models must be extended to operate
directly on non-Euclidean settings in order to be applicable to a broader domains, particular
those in the physical sciences where data often resides on manifolds.

Here we will outline how the underlying diffusion processes can be extended to Rie-
mannian manifolds, beginning with revisiting the definition of Brownian motion in these
domains, and later expressing stochastic differential equations on manifolds that express
a continuous diffusion process. After introducing diffusion models in this setting, we de-
tail methods of approximating the various quantities needed to simulate these processes
and train newly parametrized neural diffusion models. These extensions enhance diffusion
models applicability to datasets that are best described by curved surfaces, assuming the
manifold hypothesis, allowing new problems to be attacked using these models.

3.1 Brownian motion on manifolds

Brownian motion has analogs on smooth manifolds, and can be defined (or simulated) in
various ways; .e.g., for manifolds embedded into an ambient space, one can use a collection
of charts to define Brownian motion over the manifolds local coordinates, or, similar to
Section 2.1, define Brownian motion via the solution to the heat kernel on the manifold.

To begin, we will assume all (Riemannian) manifolds, (M, g), hereafter are compact,
connected, and, for simplicity, are isometrically embedded in Euclidean space (under the
Nash embedding theorem [72]) in order to define local coordinate charts; alternatively, and
with increased generality, one can also make use of intrinsic coordinates. We will primarily
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follow [28, 29] which develop estimates for the heat equation (special case of diffusion
forward equation, see Section 2.1) under the perspective Brownian motion on Riemannian
manifolds. We also draw from the appendixes of the works [14, 77, 37, 63].

Definition 2 (Laplace-Beltrami operator). Suppose (M, g) is a Riemann manifold, and
p ∈M. If ϕ : Rd ↪→ U , for U ⊆M (open) and p ∈ U , we can define the Laplace operator
on TpM, called the Laplace-Beltrami operator in this setting, as:

(∇ · ∇)M(f) =
1√

det(g)

d∑
i,j=1

∂

∂xi
(
√

det(g)(gi,j)
−1 ∂

∂xj
(f)),

for any function f ∈ C2(M) with ∂
∂xj

= ∂
∂ϕ−1

j

|p and gi,j = g( ∂
∂xi
, ∂
∂xj

)|p defining the Rie-

mannian tensor g = (gi,j).

Then we can define Brownian motion (intrinsically) using semi-martingales.

Definition 3 (Semi-martingale, [14, Appx. C.2], [36]). Let (M, g) be a given d-dimensional
Riemann manifold of Ck. A a.s. continuous stochastic process (Xt)t≥0 is called aM-valued
semi-martingale, meaning it is defined on M, if ∀f ∈ Ck(M,Rd), (f(Xt))t≥0 is a real
valued semi-martingale.

Definition 4 (Brownian motion on manifolds, [14, Appx. C.3]). Let (BMt )t≥0 be a M-
valued semi-martingale; meaning it takes on value from M. Then (BMt )t≥0 is a Brownian
motion on M if for any smooth vector field ψ :M→ Rd, the processes defined by

Mψ
t = ψ(BMt )− ψ(BM0 )− 1

2

∫ t

0

(∇ · ∇)Mψ(BMs ) ds

is a (real-valued) local martingale.

Another important preliminary is that of the Stratanovich integral. Rather than making
use of the Ito integral (as done in Euclidean space) we will deal with Stratonovich integrals
(and SDEs) in order to exploit the chain rule over differentiable charts. A consequence of
this is, unlike Ito’s integral, the stochastic processes are not true martingales, and we must
deal with semi-martingales and localization problems.

Definition 5 (Stratanovich integral on manifolds, [36]). Let (M, g) be a given d-dimensional
Riemannian manifold, (M,B, (Ft)t≥0, P ) be a filtered probability space, and (

−−→
BMt )t≥0 be a

Brownian motion (adapted process) on M defined upto a time T . Suppose {V i}di=1 be a
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collection of vector fields with Vi : M → Rd, meaning for a vector field V : M → TM,
V =

∑d
i=1 V

i ∂
∂xi

. A M-valued semi-martingale (Xt)t≥0 is a solution to the SDE

d
−→
X t = V (Xt) ◦ d

−−→
BMt

in the Stratanovich sense if for ∀f ∈ Ck(M,R) and t ∈ [0, T ]

f(
−→
X t) = f(

−→
X 0) +

d∑
i=1

∫ t

0

V i(f)(
−→
X s) ◦ d

−−−−→
(BMt )i

= f(
−→
X 0) +

d∑
i=1

∫ t

0

V i(
−→
X s)

∂f i

∂xi
◦ d
−−−−→
(BMt )i,

under local charts {ϕi} : Ui ⊆ Rd ↪→ Vi ⊆M with ϕ−1j ◦ ϕi ∈ Ck(Ui, Uj).

We are now in a suitable position to develop more general diffusion processes on man-
ifolds, mirroring the information presented in Section 2.2.

3.2 Diffusion processes on manifolds

In this section, we briefly summarize existing work that extends diffusion models to more
general non-Euclidean geometries, in particular, Riemannian manifolds. While this ex-
tension includes additional complications and necessary imprecision from approximation,
which are not present for problems that can be posed in Euclidean space, this setting
becomes necessary (or more natural) for a variety of problems where the data does not
inherently live on a flat. We primarily draw from the works [14, 77, 37, 63], citing results
where required.

Continuous diffusion processes on manifolds Let σt : [0, T ]→ R≥0 be a continuous
smooth function and (

−−→
BMt )t≥0 a Brownian motion over the d-dimensional orientable com-

pact Riemann manifold (M, g), assumeM is isometrically embedded into RD, for D ≥ d,
so we can define the global chart1 ϕ : RD ↪→ M. Then, if

−→
X 0 ∼ p0, the analog to the

Euclidean SDE onM is

d
−→
X t = σt ◦ d

−−→
BMt . (3.1)

1This condition can be slackened and is only assumed to make function multiplication easier notation-
ally, and to avoid introducing additional definitions from differential geometry.
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Then there exists an analogues time reversed equation, obeying similar initial conditions
to Eq. (2.2) see [14], of the form

d
←−
X t = σ2

t∇x log pt(
←−
X t) dt− σt ◦ d

←−−
BMt

= σ2
t

[
d∑
i,j

gi,j(
←−
X t)

−1∂ log pt(
←−
X t)

∂xj
∂

∂xi

∣∣∣∣←−
Xt

]
− σt ◦ d

←−−
BMt ,

more details for operating on manifolds is presented in Appendix A.3.

To simplify the delivery, and any proofs, we will primarily consider the diffusion process
of the form

d
−→
X t = σt ◦ d

−−→
BMt .

We can include a vector field drift term, but this necessitates further discussion around
manifold connections and parallel transport and would significantly complicate the state-
ment of results.

Sampling Brownian motion on manifolds While Definition 4 gives us a way to define
Brownian motion through the use of charts, it is not particularly efficient to sample from,
due to having to sample Brownian motion in higher dimensions, RD×D for D ≥ d, and
then project it onto the manifold of interest2. A (relatively) efficient and simple method of
sampling Brownian motion on manifolds can be obtained from simulating geodesic random
walk where we simulate curves on the tangent space TpM ∼= Rd and project them onto
the manifold, either using the exponential map – if known – or via orthogonal projection
on the surface. A simple algorithm for simulating this kind of walk for the heat kernel is
presented in [14] and written out in Algorithm 3.

In Fig. 3.1a we illustrate 600 simulation steps of Algorithm 3 atop a torus (black) as
compared to simulating 600 steps of (standard) Brownian motion in tangent plane and
projecting onto the torus. It is clear from the figure there is significant disagreement
between these methods, due to proper adjustments to local curvature used in simulating
the geodesic random walk but not in the latter. Fig. 3.1b contains a heatmap visualization
of simulating 100,000,000 steps of Algorithm 3, which approximates the limiting uniform
distribution of Brownian motion over the torus. These figures are intended to illustrate,
to the reader, the distributional difference between Brownian motion in Euclidean space,
as depicted in Fig. 2.1, and atop Manifolds.

2This is often referred to as the dimension cost of selecting an extrinsic view of the manifold.

18



Algorithm 3: Manifold Geodesic Random Walk.
Consider a Riemannian manifold (M, g). Let T ≥ 0 be a given time, N the
number of discretization steps, and X0 a initial starting point.
Data: M, T,N,X0

Result: {X̂t}Tt=0

1 ∆t← T/N
2 for t = 0, 1, . . . , N − 1 do
3 Zt+1 ← N (0, Id×d)
4 X̂t+1 ← expg(X̂t,

√
∆tZt+1)

5 return {X̂t}Tt=0

(a) (b)

Figure 3.1: (a) An illustration of 600 steps of a geodesic random walk (black) and projected
tangent plane random walk (blue) over the surface of a torus. (b) Heatmap approximation
of limiting distribution of Brownian motion on torus resulting from simulating a geodesic
random walk for 100,000,000 steps.

3.3 Neural diffusion models on manifolds

Standard diffusion model paramterizations, e.g., Section 2.3, cannot be directly employed
to tasks where the data is constrained to lie on a manifold; when attempted without
modification these models often fail to learn the task or under-perform. In order to enable
these models to adapt to changes in curvature, which affects the learned score, techniques
from [62, 77, 14, 37, 63] must be utilized.
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Loss selection: Unfortunately, in the manifold setting one must be careful to select an
appropriate loss function formulation as the regular DSM, Eq. (2.7), may no longer con-
verge. However, provided the manifold is smooth, we may utilize ISM, Eq. (2.6), without
significant issues. Nonetheless, utilizing implicit score matching comes with computational
overhead, it being necessary to estimate the divergence ∇ · sθ(Xt, t) overM. One method
of doing so is by using auto-differentiation and approximating the trace of the Jacobian
using the Hutchinson estimate [38]

∇ · sDθ = Tr(∇sθ) (3.2)
≈ Eϵ∼N (0,I)[∇(ϵ⊺sθ)ϵ]

≈ 1

N

N∑
i=1

∇(ϵ⊺i sθ)ϵi for N i.i.d. , ϵi ∼ N (0, I), random samples.

Example: Divergence estimate To demonstrate the divergence estimate given by
Eq. (3.2) we use this method to approximate the divergence of the vector function f(x, y) =
(x2, y2) over a finite grid [−1, 1] × [−1, 1] with cell size ∆ = 1/50. Fig. 3.2 contains (a)
the plot of the functions analytical divergence, (b) the Hutchinson divergence estimate for
30 random Gaussian samples, and (c) the Hutchinson divergence estimate for 30 random
Rademacher samples – a distribution that is commonly used in practice. The estimate
derived using Rademacher samples achieves a much lower absolute error – top right of the
figure illustrates the scale change to 1e−6 – in comparison to the historically used Gaussian
estimate. This highlights the importance of selecting an appropriate distribution to use
for computing the Hutchinson estimator.

Now, in most applications, we don’t have access to the analytical score, so determining
which distribution is best to sample from may not be clear, but in a number of cases
the Rademacher distribution will yield lower variance estimates. To see why, notice for
A ∈ Rn×m, with i.i.d. random samples ϵ from a distribution s.t. E[ϵ] = 0 and E[ϵ4i ] = γ,
the Hutcheison estimate of Tr(A) can be decomposed as

V ar[T̂ r(A)] =
1

N

[∑
i ̸=j

A2
ij + (γ − 1)

∑
i

A2
ii

]
.

Consequently, picking ϵ from the Rademacher distribution yields E[ϵ4] = 1 and the variance
of the estimate reduces to

V ar[T̂ r(A)] =
1

N

[∑
i ̸=j

A2
ij

]
.

20



(a) (b) (c)

Figure 3.2: (a) plot of analytical function divergence field along with absolute error between
Hutchinson divergence estimates computed using (b) Gaussian and (c) Rademacher random
projections. Note the change in scale between plots: (a) (−4, 4), (b) (0.00, 2.25), and (c)
(0.0, 1.6e−6).

Whereas, if ϵ ∼ N (0, I) then E[ϵ4] = 3 and the variance estimate becomes

V ar[T̂ r(A)] =
1

N

[∑
i ̸=j

A2
ij + 2

∑
i

A2
ii

]
.

In fact, provided E[ϵ4i ] ≥ 1 and above distribution assumptions hold, the Rademacher
distribution is guaranteed to lower the variance of the trace estimate for a given matrix.

ISM stochastic scaler In addition to the above, we found empirically during the exper-
imentation on Section 5.4 the scale difference between the norm and divergence terms in
Eq. (2.6) contributed to slow model convergence. Consequently, we devised the following
(stochastic) normalizing constant

ĉt = −
1

N

N∑
i=1

Eϵ∼N (0,I)[∇(ϵ⊺sθ(X(i)
t , t))ϵ]

∥sθ(X(i)
t , t)∥22

, for a batch {X(i)
t }Ni=1 ∼ pt

and the modified implicit score matching loss

LISM(sθ, ĉt) = EXt∼pt

[
1

2
∥ĉt · sθ(Xt, t)∥22 + ĉt · ∇ · sθ(Xt, t)

]
. (3.3)

In practice, this term is only recomputed after several thousand training iterations (>1000),
and we make the coarse approximation ĉt ≈ ĉt′ for all t′ sampled between computations,
and has shown, for the dataset Section 5.4, to improve training stability. See Section 5.4
for an example.
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Model parametrization and training Having discussed some of the issues around loss
selection and approximation on manifolds, it remains to discuss methods for paramteriz-
ing the score learned by a diffusion model to ensure the manifold curvature is properly
incorporated into the model output; for brevity, we will limit our discussion to two general
methods.

The simplest method, that is only applicable when the underlying manifold is generated
by a set of parametric equations (e.g., sphere, torus, etc), is to map the model score onto
the tangent plane of the manifold, say to M using a projection mapping proj(p, ·) :
RD × Rd → TpM, and perform the loss estimate within the corresponding tangent space
TpM. In particular, for a score parametrized model sθ, not necessarily constrained toM,
the loss computation – model training – can carried out by following Algorithm 4. This
method can suffer from approximation error in the projection step if the projection map
(e.g., exponential map) is only known approximately, but generally this method is easy to
implement and performs suitably well for symmetric manifolds.

An alternative approach, that is more flexible but involves more implementation, is
to utilize the basis approximation technique from [63, 9], which itself borrows from a
longstanding technique in computer graphics [56], where a spectral basis is constructed
from the k smallest eigen value-function pairs of the Laplace-Beltrami operator over M.
For instance, given k > 0, we may approximate the true basis ofM via the spectral basis
{ψ1, . . . , ψk} where (∇ ·∇)Mψi = λiψi for i = 1, . . . , k. Under this basis the manifold heat
kernel and DSM objective can be approximated, under sufficiently large k, as

∇x log pt(Xt|X0) ≈ ∇x log
k∑
i=1

e−λiψi(X0)ψi(Xt),

thereby enabling one to train a diffusion model in a fashion similar to the standard Eu-
clidean setting using Algorithm 1.
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Algorithm 4: Manifold (projected) diffusion training.
Consider diffusion over the Riemannian manifold M. Let sθ be a score
parametrized diffusion model, data the training dataset, σ diffusion coefficient,
N the number of discretization steps, and η > 0 the learning rate.
Data: M,data, N, sθ, σ, η
Result: θ

1 while training do
2 x0 ∼ data
3 ti ∼ U [0, 1]
4 k ← ⌊σ(ti)/σ(T )⌋N
5 xt ← random-walk(M, σ(ti), k, x0)
6 L ← LISM(proj(xt, sθ))
7 θ ← θ − η∇θL
8 return θ
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Chapter 4

Reflected diffusion

In the preceding sections, the support of the diffusion process was assumed connected and
without boundary, however, this assumption is unrealistic as data generated from physical
processes are often constrained within a narrow range of values. Consequently, if one
desires guarantees on a diffusion model generating data within a particular support, we
must consider the effects of constraining the diffusion process to lie within a bounded region
of the domain. Such bounded Brownian motions are referred to as reflected Brownian
motions without absorption at the boundary, and are the topic of this chapter.

We will begin by discussing bounded Euclidean (manifolds) regions and then move
onto a discussion around Riemann manifolds with boundaries. It might, at first inspection,
seem odd to position this chapter after Brownian motion on manifolds as opposed to before.
This was done with good reason, as reflected diffusion naturally generalizes to the manifold
setting and, in the author’s opinion, is best understood by treating the constrained domains
from the beginning as (Euclidean or Riemann) manifolds atop which Brownian motion is
defined. This chapter ends with a discussion on practicalities of training neural diffusion
models on reflected diffusion processes, and the challenges therein.

4.1 Diffusion processes on constrained domains

The seminal works [58, 69, 6, 5] have previously established, in combination, the expected
convergence behaviour and uniqueness of solutions to the forwards diffusion equation over
bounded smooth path connected domains, while the most recent works [61, 24] have es-
tablished that such diffusion processes admit well defined backwards equations that can be
effectively learned using neural networks. In this section, we elucidate the critical theorems
of the forgoing papers in a unified and self contained manner, as well as providing some
incite into the problem and key considerations necessary to effectively train neural diffusion
models under this paradigm.
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Forwards reflected diffusion process For this section we build off a stochastic process
(Xt)

T
t≥0 in Rd governed by the SDE

d
−→
X t = µ(

−→
X t, t) dt+ Σ(

−→
X t, t) d

−→
Bt

where µ and Σ are Lipschitz in Xt and t, and (
−→
Bt)

T
t≥0 is a Brownian motion process. We

are interested in studying the existence and uniqueness of a corresponding process

d
−→
X t = µ(

−→
X t, t) dt+ Σ(

−→
X t, t) d

⇝
Bt

over a constrained manifold D where (
⇝
Bt )

T
t≥0 is a Brownian motion process that does not

leave the manifold D; i.e., a version of Section 3.1 over outer-bounded subspaces.

(a)
(b)

Figure 4.1: (a) An illustration of 1000 steps of a reflected random walk starting at a orange
point bounded within a unit annulus. (b) Heatmap approximation of limiting distribution
of reflected Brownian motion within annulus resulting from simulating 100,000,000 discrete
steps.

To picture the difference between regular Brownian motion, Section 2.1, and reflected
Brownian motion, an example is depicted in Fig. 4.1a where the domain is restricted to a
(flat) annulus. Informally, much like how manifold Brownian motion, Section 3.1, must be
constrained to lie atop the prescribed manifold, reflected Brownian motion is constrained
within a domain by nullifying the portion of the random perturbation that would result
in pushing the particle outside the domain by reflecting this motion inwards. Fig. 4.1a
shows 1000 steps of a (discretized) reflected motion process. Then, just as depicted for
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the manifold setting, Fig. 4.1b shows an approximation of the limiting distribution of
this reflected motion process, which converges to the uniform distribution after sufficiently
many steps.

We now summarize some key results from [58] that establish the existence and unique-
ness of solutions to stochastic differential equation with (normal) reflection boundary con-
ditions. The basis for these results lies with the following problem definition, which is
discussed in detail in [78].

Definition 6 (Skorokhod problem, [58]). Let D ⊆ Rd be a smooth bounded open set and
(Wt)t be a family of functions Wt ∈ C([0,∞),Rd) – we are interested in the case where
Wt is a Brownian motion

−→
B t – with W (0) ∈ D, we desire a unique solution (coupling)

(Xt, Kt) that satisfies:

1. Xt ∈ C([0,∞),D), Kt ∈ C([0,∞),Rd) with Kt ∈ BV [0, T ] with;
2. Xt +Kt = Wt, ∀t ≥ 0;
3. where

Kt =

∫ t

0

n(Xs) d|K|s and |K|t =
∫ t

0

1{Xs∈∂M} d|K|s;

i.e,. (Kt)t≥0 is a stochastic process of bounded total variation that cancels out any Brownian
force that would cause Xt to leave D.

For the remainder let X ⊆ Rd compact and path connected and (X ,B, (Ft)t, P ) be
a probability space with increasing filtration (Ft)t of all sub σ-fields of X . Additionally,
suppose D ⊆ X is a smooth open bounded domain that satisfies the assumptions in
Appendix A.4 and is equip with a vector field n : ∂D → T ∂D such that ∀x ∈ ∂D,
∥n(x)∥ = 1, where n(x) is the unit outwards normal (not necessarily singular valued) at
x ∈ ∂D. Moreover, as D is assumed to be a Euclidean manifold1 we have n : ∂D → T ∂D ∼=
∂D ×X , which is the standard setting.

Note, while the assumptions stated in Appendix A.4 include non-convex domains, it is
assumed (unless otherwise stated) for the remainder that D is at least simply connected.
Additionally, the assumption can be slackened to a piecewise construction with finitely
many non-differentiable points (joins).

1Equivalently assume there exists a isometric embedding of D into Rd via the Nash embedding theorem
[72] for the case that D is a Riemann manifold, with appropriate alterations to derivatives to correct for
local curvature.
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Suppose (
−→
Bt)

T
t≥0 is a Ft-Brownian motion, then under the forgoing domain assumptions

in Appendix A.4, our objective can be formally stated as trying to find an almost surely
continuous semi-martingale (

−→
X t)

T
t≥0 of the form

−→
X t = x0 +

∫ t

0

f(
−→
X s) ds+

∫ t

0

σ(
−→
X s) d

−→
Bs −Kt

with
−→
X t ∈ D, ∀t ≥ 0 and Kt satisfying the Skorokhod problem restrictions. The next

theorem tells us when such a martingale exists.

Theorem 1 (Restated from [58]). Let D be a domain that satisfies the above assumptions
and the drift fi and diffusion coefficients σij are bounded continuous functions on Rd,
and x0 ∈ D; then for the filtered probability space (X ,B, (Ft)t, P ) there exists an unique
(coupled) stochastic process (Xt, Kt)

T
t≥0 such that:

1. (Kt)t is a stochastic processes of bounded variation on [0,∞] almost surely;

2. (Xt)t ∈ C([0,∞],M);

3. ∀t ≥ 0, Xt = X0 =
∫ t
0
f(Xs, s) ds+

∫ t
0
Σ(Xs, s) d

−→
Bs −Kt, where

|K|t =
∫ t
0
1{xs ∈ ∂M} d|K|s.

For the particular case where we are given a continuous Ft-local martingale (
−→
Bt)t≥0, a

continuous bounded variation adapted process (Kt)t≥0, and fi(x, t) and σij(x, t) satisfy a
uniform Lipschitz condition in x and are progressively measurable (under the filtration),
then the above are also satisfied.

Under the (simple) reflected process

d
−→
X t = d

⇝
Bt ,

which is that primarily considered in [24], we have the following results, which can be
seen to originate from characterization of Brownian motion via the heat kernel given in
Section 2.1 with Neumann boundary conditions. The first result combines the forgoing
assumptions and lemmas to explicitly cover non-convex domains with smooth boundaries.

Theorem 2 ([69, Theorem.3]). Let D ⊆ Rd be a given bounded smooth path-connected do-
main. If D satisfies Assumption 1 then there exists a unique limiting distribution (stochastic
process (Xt, Kt)t≥0 that satisfies Definition 6.
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I provide a sketch of the overall proof of this theorem, along with some minor notes to
give the reader some intuition, as the original proof is quite dense and only a special case
of the result is needed.

Proof. For diffusion process (
−→
X t)

T
t≥0 with reflection at the boundary ∂D in the direction

of the normal n and zero jump (i.e., γ(
−→
X t, z) = 0 for ∀

−→
X t – in the original text) with

Lipschitz continuous drift and diffusion terms µ and Σ, then by [69, Theorem 3] problem
Definition 6 admits a unique limiting (in probability) solution over D. Then by noting the
diffusion processes

d
−→
X t = µ(

−→
X t) dt+ Σ(

−→
X t) d

−→
Bt

can be equivalently2 treated as one in which the drift and diffusion terms vary in time,
e.g.,

dYt = µ(
−→
Y t, t) dt+ Σ(

−→
Y t, t) d

−→
Zt

where we take
−→
B t = (

−→
Z t, t) with (

−→
Z t)t≥0 to be (d− 1)-dimensional Brownian motion and

µ(
−→
X t) = µ(

−→
Y t, t) and Σ(

−→
X t) = Σ(

−→
Y t, t) (under some slight abuse of notation). Thus, the

above result recovers the affine diffusion process we considered in Section 4.1.

It is worth pointing out the results of [69, 6, 5] consider Corollary 1 where the boundary
of the domain vary in time, however, our discussion is limited to fixed boundary domains.

Corollary 1 (See [5]). Let (
⇝
Bt )t≥0 be a Brownian motion over the constrained domain D.

For any t the distribution of
⇝
Bt under the Lebesgue measure dλ is uniquely determined by

a density {
∂
∂t
pt(x) =

1
2
(∇ · ∇)Mpt(x)

∂
∂n
pt(x0) = 0

where n is the outwards normal vector field of ∂D.
2Under a suitably chosen dimension lift function.
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Backwards diffusion process Having established the conditions for the existence and
uniqueness of a solution to the forwards (normal) reflected SDE, in particular the form
of the forwards transition kernels, we now discuss conditions for the matching backwards

process (

⇝

Bt )
T
t≥0 to be well posed.

The most general formulation of the two is that presented within [24] which approaches
the problem from a topological perspective over (Euclidean) manifolds, building on the
work of [14, 37]. We will begin by setting up existing results for the backwards diffu-
sion process on domains possessing smooth boundaries consisting of one path connected
component.

Lemma 1 (Extension of [5, Theorem 2.6] by [24]). Let u(s, x) be C1((0, T ),R) in terms
of s, C2(D,R) in x and C1(D,R). Let D obey the conditions of Assumption 1. Then for
any s, t ∈ [0, T ], s ≤ t, we have

E
[ ∫ t

s

u(r,

⇝

Br) d|K|r
]
=

1

2

∫ t

s

∫
∂D
u(r, x)pr(x) dµ(x) dr,

where pr is the density admitted by the Brownian process (
−→
B r)r≥0 under the Lebesgue

measure dλ, and µ is the volume measure for the surface ∂D.

The statement of this lemma is slightly modified from its statement in [5] by replacing
the smoothness assumptions with Assumption 1, which we believe to be equivalent. Proof
of this result was not provided in [24], to the best of our searching, so we reconstruct one
below based on the proof of [5, Theorem. 2.6]. We opt to include this result in the main
text, despite its length, as it is a central result to the validity of applying these techniques
to training diffusion models in constrained settings.

Proof. Let D be a C2 smooth bounded (Euclidean) manifold, a subspace of RD. Let ϵ > 0
and define ψ : R→ R≥0 with

ψϵ(x) =

{
(ϵ−x)2

2
if 0 ≤ x ≤ ϵ,

0 otherwise.

Now for a distance measure d : RD × RD → R≥0, set fϵ(x) = ψϵ(infp∈Dc d(x, p)), which for
convince we will write as ψϵ(d(x,Dc)). We will also make use of the shorthand notation
Dϵ = {x | 0 ≤ d(x,D) ≤ ϵ}. As ∂D is smooth we observe the following: ∀x ∈ RD

1. 0 ≤ fϵ ≤ ϵ2;

29



2. ∥∇fϵ∥2 ≤ cϵ for some constant c > 0;

3. ∇fϵ(xr) =


−ϵn(xr) if xr ∈ ∂D,
−(ϵ− d(x,Dc))n(xr) if 0 < d(xr, ∂D) ≤ ϵ,

0 otherwise.
4. ∇ · ∇fϵ(xr) = (1 +O(ϵ))1{d(xr,Dc) ≤ ϵ}.

The validity of 4., which is needed in order to apply Ito’s lemma later on, is not obvious
as the second spacial derivative of f is not defined, so we will provide a distributional
argument. Define a mollifier η : RD → R≥0 with η ∈ C3

c and compactly supported on
B1(0), with

∫
RD η(x) dx = 1, and

∫
RD ∇ · ∇(x) dxη = 0. Set

ηδ(x) =
1

δD
η
(x
δ

)
, and fϵ,δ(x) = (fϵ ∗ ηδ)(x).

First we claim that fϵ,δ → fϵ uniformly as δ → 0 on the compact support Bδ(0). To see
this, note that fϵ,δ is compactly supported and due to the continuity of fϵ, for ϵ′ > 0 there
exists a δ′ > 0 s.t.,

∥y∥ ∈ Bδ′(x) then |fϵ(x− y)− fϵ(y)| ≤ ϵ′.

Picking δ = δ′, gives for all y in the compact support Bδ(0)

|fϵ,δ(x)− fϵ(x)| = |
∫
RD

fϵ(x− y)ηδ(y) dy − fϵ(x)
∫
RD

ηδ(y) dy|

= |
∫
RD

[fϵ(x− y)− fϵ(y)]ηδ(y) dy|

≤
∫
ϵ′ηδ(y) dy

= ϵ′

and so fϵ,δ → fϵ uniformly as δ → 0. Now, let g ∈ C∞c (RD,R) be a test function, and
recall the definition of a generalized function derivative

⟨∇ · ∇fϵ,δ, g⟩ = ⟨fϵ,δ,∇ · ∇g⟩.

Now, since fϵ,δ ∈ L1(Bδ(0)), from [29, Lem 11.2], we have

⟨fϵ,δ,∇ · ∇g⟩ →∗ ⟨fϵ,∇ · ∇g⟩
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as δ → 0. The final expression for 5. follows from differentiating fϵ point-wise. Returning
to the main result, for dxr = d

−→
B r, i.e., for the forward dynamics from Corollary 1, we get

after applying Ito’s lemma that

u(t, xt)fϵ(xt) = u(s, xs)fϵ(xs)

+

∫ t

s

[u(r, xr)∇fϵ(xr) + fϵ(xr)∇u(r, xr)] d
−→
B t

+

∫ t

s

u(r, xr)
∂

∂n(xr)
fϵ(xr) d|K|t

+

∫ t

s

[fϵ
∂

∂r
u(r, xr) +

1

2
u(r, xr)∇ · ∇fϵ(xr) +

1

2
fϵ(xr)∇ · ∇u(r, xr)

+∇u(r, xr) · ∇fϵ(xr)] dr.

Dividing everything by ϵ, observe that for the component terms in the above expression
we have (1)

fϵ(xr)

ϵ
=
ψϵ(d(xr, p))

ϵ
=

{
(ϵ−d(xr,p))2

2ϵ
if 0 ≤ d(xr, p) ≤ ϵ

0 otherwise,

and consequently u(t, xt)fϵ(xt)− u(0, x0)fϵ(x0) ∈ O(ϵ) for ϵ → 0; for (2) we leave it as is;
in (3) we get

∂

∂n
fϵ(xr) =

{
∂ψϵ(xr)
∂d(xr,p)

∂d(x,p)
∂n

for xr ∈ Dϵ
0 otherwise.

=

{
−(ϵ− d(xr, p)) if xr ∈ Dϵ
0 otherwise.

since ∂ψϵ(xr)
∂d(xr,p)

= −(ϵ− d(xr, p)) for xr ∈ Dϵ and ∂d(x,p)
∂n

= 1 for x = vx′ for some x′ ∈ Dϵ and
v ∈ Sd−1; and for (4) by Taylor approximation and definition of the function

1

2ϵ

∫ t

s

∇ · ∇fϵ(xr) dr =
1

2ϵ

∫ t

s

(1 +O(ϵ))1{xr ∈ Dϵ} dr

= O(1)

∫
1{xr ∈ Dϵ} dr +

1

2ϵ

∫
1{xr ∈ Dϵ} dr.

Rearranging and simplifying by plugging in the above observations we get∫ t

s

u(r, xr) d|K|t = −
1

ϵ
u(t, xt)fϵ(xt) +

1

ϵ
u(0, x0)fϵ(x0) +

1

ϵ

∫ t

s

u(r, xr)∇fϵ(xr) d
−→
B r
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+
1

ϵ

∫ t

s

fϵ(xr)∇u(r, xr) d
−→
B r +

1

ϵ

∫ t

s

fϵ(xr)
∂

∂t
u(r, xr) dr

+
1

2ϵ

∫ t

s

u(r, xr)1{xr ∈ Dϵ} dr +
1

ϵ
O(1)

∫ t

s

u(r, xr)1{xr ∈ Dϵ} dr

+
1

2ϵ
fϵ(xr)∇ · ∇u(r, xr) dr −

1

2ϵ

∫ t

s

∇u(r, xr) · ∇fϵ(xr) dr.

Now under expectation and collecting like terms this reduces to

E[
∫ t

s

u(r, xr) d|K|t] =E[
1

ϵ

∫ t

s

u(r, xr)∇fϵ(xr) d
−→
B r

+
1

ϵ

∫ t

s

fϵ(xr)∇u(r, xr) d
−→
B r

+
1

2ϵ

∫ t

s

u(r, xr)1{xr ∈ Dϵ} dr] +O(ϵ)

this further simplifies, for sufficiently small step size of (
−→
Bt)t≥0, to

E[
∫ t

s

u(r, xr) d|K|t] =E[
1

2ϵ

∫ t

s

u(r, xr)1{xr ∈ Dϵ} dr] +O(ϵ).

Then by definition of the surface measure µ on ∂D, and the definition of |K|t in Definition 6,
as ϵ→ 0 we replace the indicator and transition kernel to yield the desired expression

E[
∫ t

s

u(r,

⇝

Br) d|K|r] =
1

2

∫ t

s

∫
∂D
u(r, x)pr(x) dµ(x) dr.

Having established the validity of Lemma 1 we now state the main result of [24], the
poof of which relies on the forgoing result.

Theorem 3 (Time reversed SDE, see[24]). Under the forgoing assumptions, there exists a
coupled process (

←−
Bt, Kt)t≥0 where Kt ∈ BV [0, T ] with

←−
Xt = x0 +

←−
Bt +

∫ t

0

∇x log pT−s(
←−
Xs) ds−Kt.
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Consequently, we can say the reversed process (

⇝

Bt )t≥0 is well defined over the selected
domains and the reverse SDE can be expressed in the familiar form:

d
←−
Xt = ∇x log pt(

←−
Xt) dt+ d

⇝

Bt .

Before concluding this section, we state a straightforwards generalization of the above
result to a forwards SDE that has a non-fixed scaling term3.

Corollary 2. Under all the same assumptions as in Theorem 3, and for σ(t) : [0, T ]→ R>0

smooth, the SDE

d
−→
X t = σ(t) ◦ d

⇝
Bt

admits a well defined time-reversed (reflected) equation.

Proof. Let σ(t) ∈ C2([0, T ],R>0) and set
−→
Y t = σ(t) ·

−→
Bt, for the adapted process (

⇝
Bt )

T
t≥0

with
⇝
Bt =

−→
Bt+

−→
Kt, so that we get a stochastic process (Yt)Tt≥0. Now consider the dynamics

of Xt where

d
−→
X t = d

−→
Y t.

Following the same proof as for Theorem 3 but with |K|t =
∫ t
0
1{
−→
Y t ∈ ∂D} d|K|s, absorb-

ing the σ(t) into Kt, and Kt =
∫ t
0
n(
−→
Y t) d|K|s gives the claimed result.

Example: Smooth constrained domain To close out this section, we give a toy
example (defined below) that characterizes the form of assumptions discussed implicitly til
now, which are detailed in Appendix A.4. As setup, suppose R2 is our ambient space. Let
r1, r2 ∈ R>0 with r2 > r2, p ∈ R2, and set

D = {x ∈ R2 | r2 ≥ d(x, p) ≥ r1}

to be our constrained manifold of interest; which is nothing more than an annulus. It is
clear that ∂D is composed of finitely many smooth functions, so D is a smooth bounded

3While this result is not stated explicitly in [24], we believe it can fit into the proof provided by selection
of the function u in the forgoing lemma. Nonetheless, we state it explicitly for clarity.
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domain (in the topological sense Definition 13). Moreover, D satisfies the uniform (external
and internal) sphere condition for radius r = r1/2.

To show this domain satisfies Assumption 1, and thus admits a limiting reflected diffu-
sion distribution, we may construct D based around Bolzman functions, which are of the
form

f(x) = c− exp

{
−∥x− p∥

γ
2

2r2

}
,

where the variables c, r, γ ∈ R control the described disc; in particular, c controls the
intercept, γ the bound of derivative norm, and r the radius.

(a) Image of ϕ in R3. (b) Image of ϕ(x) ≥ 0 in R3.

Figure 4.2: Plot of (a) function ϕ and its (b) threshold image which generates domain D.

For simplicity of presentation, assume wlg p = 0, which can be achieved by appropriate
translation of x, and let

ϕ(x) = exp

{
−

(√
x21 + x22 − r2

r1

)2}
− exp

{
−
(√

x21 + x22
r2

)2}
.

An illustration of ϕ is depicted in Fig. 4.2. Moreover, below we show this ϕ(x) satisfies all
the conditions in [93, 58] necessary to ensure the (forward) diffusion process - the forwards
stochastic differential equations - with (normal) reflected boundary conditions possesses a
well defined and unique solution. Observe, ϕ satisfies:

1. Boundedness: For any B(0, r) ⊆ R2, ∀x ∈ B(0, r), ∃L ∈ R≥0 such that ∥ϕ(x)∥ ≤ L;
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2. Is twice continuously differentiable: As ϕ is the sum of exponential functions it is (at
least) twice continuously differentiable;

3. The gradient is lower bounded on the boundary, in particular, ∥∇ϕ(x)∥ ≥ 1 for
x ∈ ∂D: Firstly, with d =

√
x21 + x22, we have

∇ϕ(x) =
[
2x1
r21

exp

{
−

(
d

r1

)2}
− 2x1(d− r2)

r21d
exp

{
−
(
d− r2
r1

)2}
,

2x2
r21

exp

{
−
(
d

r1

)2}
− 2x2(d− r2)

r21d
exp

{
−

(
d− r2
r1

)2}]
.

Now for x ∈ ∂D, if d = r1 the above reduces to

∇ϕ(x) =
[
2x1
r21

exp{−1} − 2x1(r1 − r2)
r31

exp

{
−
(
r1 − r2
r1

)2}
,

2x2
r21

exp{−1} − 2x2(r1 − r2)
r31

exp

{
−
(
r1 − r2
r1

)2}]
.

Now observe, since r1 ≤ x ≤ r2 and the inequality ex ≥ 1 + x, we have for the first
term [

2x1
r21

exp{−1} − 2x1(r1 − r2)
r31

exp

{
−
(
r1 − r2
r1

)2}]2
≥

[
2x1(r1 − r2)

r31
exp

{
−
(
r1 − r2
r1

)2}]2
≥ 4x21(r1 − r2)6

r101

and applying the same reduction to the second term we get

∥∇ϕ(x)∥ ≥
[
4(x21 + x22)

(r1 − r2)6

r101

] 1
2

≥ 2

[
(r1 − r2)6

r91

] 1
2

.

As a result of this approximation not being tight, the parameter space (r1, r2) is
not convex; with approximate lower bound r2 ≥ (0.5 + r1)

2 . An exemplar set of
parameters that does satisfy the condition are r1 = 1, r2 = 2. It was implicitly
assumed c = 0 and γ = 2 throughout.
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4. The boundary ∂D satisfies the uniform sphere condition: It is evident for 0 < r ≤ r1
the uniform sphere condition is satisfied.

With this motivating example in mind, it is easy to see how one can generalize the
forgoing results to encompass domains constructed by various ϕ functions of the above
form. Examples of training diffusion models over this kind of domain are postponed till
Section 5.4.1.

4.2 Neural reflected diffusion models

Particular care must be given to the parameterization chosen for neural reflected diffusion
models and the score matching loss, since the noise is no longer (globally) Gaussian which
results in a few additional complications to the learning task. We begin by discussing some
loss selection and evaluation considerations necessary for training these models, and then
introduce specific methods of constraining the model output for domains with boundary.

Loss selection: It was shown in the works [24, 61] that the ISM loss, Eq. (2.6), will con-
verge (up to a constant difference) to the correct score for reflected diffusion. Consequently,
ISM loss remains a viable option for training, alongside direct score parameterization of
the model as discussed in Section 3.3. Concurrent to this, [61] goes on to show, thanks
to an assumed4 global diffeomorphism mapping between D and the unit hypercube Hd,
denoising score matching Eq. (2.7) has an analogous extension to constrained domains,
namely

LCDSM(θ) = ED−→
X0∼p0

ED−→
X t∼pt(

−→
X t|
−→
X0)

[∥sθ(
−→
X t)−∇x log pt(

−→
X t|
−→
X 0)∥22]. (4.1)

Methods for evaluating the ISM loss over manifolds, which D is a subset of, were
discussed in Section 3.3 so we will not repeat this discussion here. The only modification
necessary is the incorporation of the above boundary parameterization given below in
Section 4.2. On the other hand, when using Eq. (4.1), we cannot compute the conditional
marginals pt(Xt|X0) in closed form, thus, in order to compute the constrained denoising
score matching objective [61], for “small” σ(t) we may utilize a mixture of Gaussian’s
approximation [68]

pt(Xt|X0) ≈
N∑
i=1

wi(X0)
1

(2πσ2
t )
d/2

exp

{
− 1

2σ2
t

∥Xt − xi∥22
}

4Equivalent to the isometric embedding assumptions used in Section 3.2 for convex domains.
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where the sum is evaluating the pdf of N (X0, σ
2
t I) over {x1, . . . , xN} ⊆ D a set of samples

drawn following Algorithm 6, and w1, . . . , wN are weighting functions used to model the
conditional behaviour on X0.

Model parametrization and training: In either loss formulation, it was empirically
found in [61] that it is necessary to enforce the the boundary condition by scaling the
output of the neural network by a monotone decreasing (smooth) function h : Rd → R≥0
with h(x) = 0 for all x ∈ ∂D. The paramterization chosen in [24] is

sDθ (Xt, t) = min{1,ReLU(d(Xt, ∂D)− δ)} · sθ(Xt, t), (4.2)

where δ > 0 is a chosen boundary margin and d : D×D → R≥0 is a distance function. This
function ensures that as points approach the boundary the magnitude of the score goes to
zero within the set margin from the boundary. Thus, when sampling using Eq. (2.5) points
can’t be pushed outside of the domain.

Just as done in Section 3.3, when these methods are applied outside of the Euclidean
domain, depending on the chosen parametrization, the score must be mapped (projected)
onto the tangent plane of the manifold. In particular, for a score parametrized model sθ,
not necessarily constrained to D, the loss computation – model training – is carried out
following Algorithm 5.

Algorithm 5: Manifold (reflected) diffusion training.
Consider diffusion over the manifold D which lies on the Riemannian manifold
M. Let sθ be a score parametrized diffusion model, data the training dataset, σ
diffusion coefficient, N the number of discretization steps, η > 0 the learning rate,
and {ϕi}i∈I a set of constraints that define ∂D.
Data: {ϕi}i∈I ,data, N, sθ, σ, η
Result: θ

1 while training do
2 x0 ∼ data
3 ti ∼ U [0, 1]
4 k ← ⌊σ(ti)/σ(T )⌋N
5 xt ← manifold-reflected-step({ϕi}i∈I , σ(ti), k, x0)
6 L ← LISM(proj(xt, sθ))
7 θ ← θ − η∇θL
8 return θ
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Sampling To sample the (forwards) reflected diffusion process,

d
−→
X t = d

⇝
Bt

that we started with at the beginning of this section, which is a necessary step in Al-
gorithm 5, we will follow the Metropolis-Hasting version of the Euler-Maruyama scheme
proposed in [24], which we now restate as Algorithm 6. This algorithm, which as writ-
ten in [24, Appx.C], is a discretization of the Riemann manifold heat equation given in
Section 3.15.

Algorithm 6: (Reflected step proxy) Metropolis-Hasting Random Walk.
Consider diffusion over the manifold D which lies on the Riemannian manifoldM.
Let T ≥ 0 be a given time, N the number of discretization steps, X0 a starting
point, and {ϕi}i∈I a set of constraints that define ∂D. [24].
Data: {ϕi}i∈I , T,N,X0

Result: {Xk}Nk=0

1 ∆t← T/N
2 for k = 0, 1, . . . , N − 1 do
3 Zk+1 ← N (0, I)
4 X ′ ← expg(Xk,

√
∆tZk+1)

5 if mini∈I ϕi(X
′) ≥ 0 then

6 Xk+1 ← X ′

7 else
8 Xk+1 ← Xk

9 return {X̃k}Nk=0

After training, the model can be sampled using a projected form of Langrangien dy-
namics, Eq. (2.5), as mentioned in prior sections where points are transported along the
domain through dscretized projection integration steps.

5This differs from the SDE given in the algorithm caption stated Appx.C of [24]; if one discretizes the
SDE in the caption they will not recover the correct algorithm update step. We have corrected this error.
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Chapter 5

Structure preserving diffusion models

In keeping with the theme presented when discussing reflected diffusion, the notion of
structure preserving diffusion models is best conveyed by observations to properties present
in solutions to physical systems, or data generated from such systems. Such data tend to
posses certain forms of symmetry indicative of the problem considered, e.g., a drug molecule
is unchanged by its orientation within a fluid and when rotated around certain points
remains unchanged in form. Consequentially, if one has prior knowledge of the symmetries
to solution of a known problem, these symmetries can be used to constrain the list of
candidates to only those that satisfy these symmetries. This often results in considerable
speedup in under-posed tasks where the search space can be quite large, containing many
different orientations of the same principle candidate solution.

As a result of this exchangability between solution and symmetry constraints, there
has been considerable work attempting to constrain neural networks to respect group-
invariant (or equivariant) distributions [88], particularly, for generations tasks, e.g., drug
discovery, where typically multiple solutions exist for any given set of input parameters.
This is underscored by the widespread utilization of diverse forms of data augmentation;
however, achieving perfect group invariance (or equivariance) by data augmentation alone
necessitates infeasibly many training samples, with models often falling short of being
adequately conditioned through data augmentation alone [22, 25]. Consequently, various
more principled approaches have started to gain popularity in the last few years.

Notably within diffusion models [91, 90, 33, 48, 102], and diffusion bridge models
[16], have focused primarily on applications in molecule generation (e.g., molecular con-
formation, and protein backbone generation) [89, 101, 35, 102, 46, 12, 66]. Most of these
approaches can be broadly described as conditioning the diffusion process on a graph prior
that represents the unconformed molecule, and employing a transformation (applied to the
inner molecular atomic distances - such as the relative torsion angle coordinates [46]) that
produces a group-invariant form (or one that is more robust to the selected group transfor-
mations). This, thereby, results in a representation that is sufficient to ensure the diffusion
process is equivariant. More generally, [15, 67, 102], investigate distribution invariance over
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more general geometries (e.g., Riemannian manifolds generated by Lie groups). The study
of distribution invariance comes about naturally as a result of finding a limiting probability
distribution over the geometry in these settings, a requirement for the diffusion process to
be well-defined.

In the works [64, 65] we extend existing theoretical results, developed within the for-
going works, by providing a complete characterization of the necessary and sufficient con-
ditions on the drift and diffusion terms to ensure a diffusion process preserves invariants;
in particular, invariances that can be expressed in terms of a group of isometry transfor-
mations. I will now summarize these results and provide some extensions to alternative
diffusion processes, reflected diffusion in constrained settings, and manifold domains.

5.1 Invariant diffusion processes

To put this discussion on more solid terms, we must formalize the notion of an “invariant”
distribution. Throughout the following, we are interested in sampling from a G-invariant
distribution with a smooth density function p : Rd → R>0 that is non-zero almost every-
where1 which satisfies:

Definition 7 (G-invaraint distribution). For a given group G, a distribution p is G-
invariant if for all closed balls B ⊆ Rd and h ∈ G,∫

B

p(x) dx =

∫
h(B)

p(z) dz,

where h(B) = {h(x) | x ∈ B}.

In this study we restrict our discussion to groups comprised of linear isometries. This
restriction is made to exclude transformations that would, for pixel-space diffusion models,
cause value shifts away from the assumed mean value; e.g., transformations that scalar
multiply the pixel values in the image by a scalar amount – for images with non-zero
mean, avoiding aberrant scaling factors within the learned score and proof of Theorem 4.

1This assumption can be easily satisfied by convolving the target (or empirical proxy) distribution with
a Gaussian kernel, to produce a mollified distribution.
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5.2 Invariance conditioning

In the works [65, 64] we consider a general diffusion bridge SDE of the form

d
−→
X t = f(

−→
X t, y, t) dt+ g(t) d

−→
B t, X0 ∼ p(x0 | y), (5.1)

that bridges a (probability) path qt between (data) distributions q0(x) = qdata(x) and
qT (y) = qdata(y), where (x, y) ∼ qdata(x, y). DBs leverage the distribution pt induced by
Eq. (2.1) with X0 = x and XT = y to sample Xt. In this way,

qt(Xt) = E(X,Y )∼qdata(X,Y )

[
pt(Xt | X0 = x,XT = y)

]
.

Such a process encompass regular diffusion processes seen in Section 2.2 by setting
qT = N (0,Σt) to recover the standard, conditional, diffusion equations. In fact, Eq. (5.1)
is a slightly more general version of the standard diffusion bridge equation due to the
inclusion of the conditioning variable y which we use to encode other factors affecting the
process which need not have the same shape as Xt.

The central result from the aforementioned works is the following theorem, which says,
given a data distribution, that is assumed to be G-invariant, describes sufficient and nec-
essary conditions on the form of drift terms of diffusion processes that preserve the G-
invariance throughout the diffusion trajectory. While sufficient conditions have been es-
tablished for the case where Y lies in the same space as Xt, this result extents these to
more general conditional variables and provides new necessary conditions which convey
design insights for equivariant bridge models.

Theorem 4 (Diffusion invariance characterization, [65]). Given a forward diffusion pro-
cess, such as in Section 2.2 or a more general diffusion bridge process, with G-invariant
p0(X | Y ), let [0]pt be the set of ODE drifts that preserve the distribution pt; meaning they
preserve the drift. Then pt(Xt|Y ) is G-invariant for all t ≥ 0 if and only if

κ−11 ◦ f(κ1Xt, κ2Y, t)− f(Xt, Y, t) ∈ [0]pt (5.2)

for all t > 0, X ∈ Rm, Y ∈ Rn and κ ∈ G.

Formalizing the above note, existing structure-preserving diffusion models mentioned
above, are based on the special case that κ−11 ◦ f(κ1Xt, κ1Y, t) − f(

−→
Xt, Y, t) = 0, thus the

above theorem is expressly more general in terms of conditioning and permissible drift
terms. As a note, the above results reduces to the standard unconditional case when
y = ∅, with G reducing to a non-coupled group of elements, and Eq. (5.2) becoming
κ−11 ◦ f(κ1Xt, t)− f(Xt, t) ∈ [0]pt .
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5.2.1 Conditioning methods

Below we discuss three methods of constraining diffusion models over discrete groups of
linear isometries. These methods are subsequently evaluated against each other in addition
to some baseline methods in Section 5.3 over a variety of different groups and datasets.

Method: Weight-tied convolutions In [65, 64] we focused on diffusion models based
on the U-Net backbone [86, 84] in which the only components that are not equivariant are
the CNNs layers. Thus, we replace them with group-equivariant CNNs [11, 82, 23, 52, 51]
to make the entire network equivariant.

For the particular case of linear isometries, we can construct equivariant CNN layers
by constraining convolution kernel weights. In particular, for a given linear group G, we
can construct a group equivariant convolution kernel k ∈ Rd×d, of the form:

k =

k1,1 k1,2 · · · k1,d
...

... . . . ...
...

...
...

kd−1,1 kd−1,2 · · · kd−1,d
kd,1 kd,2 · · · kd,d

,

such that for any h ∈ G and X ∼ p0, we have h(k ∗ X) = k ∗ h(X) by constraining
the individual kernel weights to obey a system of equalities set by the group invariance
condition h(k) = k.

Example: The C4 cyclic and D4 dihedral group. Recall that the C4 cyclic
group is composed of planar π/2 rotations about the origin, and can be denoted as
C4 = {e, r1, r2, r3} where ri represents a rotation by iπ/2 radians. Taking a convolu-
tion kernel k ∈ R5×5 and constraining it to be C4-equivariant results in k being of the
form:

k =

a b c d a
d e f e b
c f g f c
b e f e d
a d c b a

.

The D4 dihedral group can then be constructed from C4 by adding the vertical flipping
operation to the past example; that is, D4 = {e, r1, r2, r3, fx, fx ◦ r1, fx ◦ r2, fx ◦ r3}. This
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requires further constraints to k so that:

k =

a b c b a
b e f e b
c f g f c
b e f e b
a b c b a

.

Naturally, constraining convolution kernels in this fashion has the computational ad-
vantage of reducing the number of model parameters – with a possible loss in expressiveness
when the kernel size is relatively small in comparison to the size of the group and structure
of the data. For a more general discussion on G-equivariant convolution kernels in the
context of CNNs see [11].

Method: Equivariance regularization Instead of achieving G-equivalence by adopt-
ing specific model architectures, as in Section 5.2.1, we can also directly add a regularizer
to the score-matching loss, Eq. (2.7), to inject this preference. Specifically, from Theorem 4
we know the estimated score sθ(Xt, t) is equivariant if

sθ(κXt, κY, t) = κsθ(Xt, Y, t)

for all κ ∈ G; for the unconditional setting, an equivalent technique can be applied by
omitting the second argument. Thus, we propose the following regularizer to encourage
the two terms to match for all Xt:

R(θ, θ) = E

[
1

|G|
∑
κ∈G

∥sθ(κXt, κY, t)− κsθ(Xt, Y, t)∥22

]

where the expectation is taken over the same variables in Eq. (2.7) and θ denotes the
exponential moving average (EMA) of the model weights

θ ← stopgrad(αθ + (1− α)θ) with α ∈ [0, 1),

which, at least empirically, has been shown to improve training stability [96, 33]. In
practice, iterating over all elements in G may be computationally prohibitive, instead for
each optimization step, R(θ, θ) is one-sample approximated by:

R(θ, θ) ≈ E
[
∥sθ(κXt, κY, t)− κsθ(Xt, Y, t)∥22

]
,
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with randomly picked κ ∈ G. This regularizer in practice, see Table 5.1 and Table 5.2 – the
details of which are described in Section 5.3, was shown to outperform data-augmentation
alone. We suspect this is due to it providing a more accurate one-sample estimate of the
invariant gradient compared to that provided by an augmented batch alone. With that
said, one group element sample does not appear to sufficiently condition the score, as can
be seen by the ∆x0 reconstruction error.

This regularization technique is very similar in formulation to the more principled
approach of frame averaging (FA) [80]2 which we ended up utilizing in [65] across all the
experiments.

Method: Frame averaging When G contains finitely many elements, we can achieve
G-equivariance through frame averaging (FA) [80], leveraging the following fact: for any
function r : Rd → Rd,

r̃(x, y) =
1

|G|
∑
k∈G

k−1r(kx, ky)

is G-equivariant. The second argument of r can be discarded for the approximation of the
score not conditioned on y. Based on this fact, we can obtain an equivariant estimator s̃θ
of the score by setting r = sθ. Note that unlike other FA-based diffusion models, notably
[66, 19], we train our models using regular denoising score-matching, Eq. (2.7), and only
adopt FA during sampling. This design significantly saves training costs while theoretically
sacrificing nothing.

5.3 Experiments

Here we summarize the key experiments and empirical results conducted in [65, 64], which
were used to evaluate the effectiveness of the proposed methods in Section 5.2.1 at pre-
serving symmetries present in the target distributions. The main experiments encompass
a set of image generation, denoising, and style-transfer tasks detailed below in Section 5.3
and Section 5.3 respectively. A qualitative comparison of sample quality is given in Ap-
pendix B.2.

2We ended up rediscovering the frame averaging technique independently during development only to
have the existance of FA pointed out to us by a reviewer.
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All methods are trained using the same set of common data-augmentation techniques3,
unless otherwise stated to remove this as a factor in performance comparisons; thus, it
is important to reiterate that we do not expect the proposed models to greatly exceed
the baseline in perceptual image quality, as measured by Fréchet intercept distance (FID)
[32] and structural similarity index measure (SSIM) [100], rather, these methods should be
evaluated on retention of baseline quality while offering guarantees on learned invariances
not offered by standard methods. To this end, we report the absolute reconstruction error
between samples generated by cycling the condition through the invariance group. This
evaluation metric, denoted ∆x̂0, is minimized when a model is able to perfectly reconstruct
the same sample for all orientations of the condition but is otherwise equal to the largest
deviation between such samples. Apart from this, we introduce a metric called Inv-FID
in an attempt to quantify the learned invariance in the sampling distribution. Inv-FID
calculates the maximum FID between a set of samples Ds ∼ p0 and κ1(Ds) for κ ∈ G.
If p0 is perfectly G-invariant, applying any κ to its outcomes would leave the resulting
distribution unchanged.

Emprical datasets Here we adopt C4 Rotated MNIST [55], LYSTO [44], and ANHIR [4]
datasets that have been used in the past to evaluate the equivaraince of generative models
[18, 3]. We also validate our models effectiveness on the style transfer tasks of denoising
LYSTO images, and converting CT scan images to PET scan images of the same patients
from the dataset [26].

Rotated MNIST dataset contains random π/2 rotations of MNIST images [17], resulting
in a C4-invariant distribution4. This dataset has been used to evaluate group-invariant
CNN models previously, as seen in [18, 3], with experiments performed on 1% (600), 5%
(3000), and 10% (6000) of the dataset used to evaluate a model’s robustness to limited data.
The LYSTO dataset [44] includes 20,000 image patches from breast, colon, and prostate
cancer samples stained with CD3 or CD8 dyes, exhibiting D4 invariance. Following [3],
models are trained on randomly selected (64x64x3) crops from the scaled-down (128x128x3)
LYSTO dataset. ANHIR dataset [4] provides (15kx15k) images of lesions, lung-lobes,
and mammary-glands, from which we extract random (64x64x3) patches from lung-lobes
according to the method used in [18]5.

The CT-PET dataset [26] includes 1014 annotated whole-body paired FDG-PET/CT
scans of patients with malignant lymphoma, melanoma, and non-small cell lung cancer.

3random rotation, noise perturbation, contrast adjustment, etc.
4Note, here there will be ambiguity between 6 and 9 digits.
5I would like to thank, Neel Dey, for providing the pre-processed ANHIR dataset used in [18] and for

clarifying some details around how the computation of FID was carried out within the forgoing paper.
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We processed this volumetric dataset by extracting a set of median 2D slices along the long
axis of each patient scan. The resulting images were center cropped to a final resolution of
(256x256x3), resulting in the final used dataset that is invariant under horizontal flipping6.

Experiment: Image generation For the image generation tasks on the Roated MNIST,
LUSTO, and ANHIR datasets, we train a standard diffusion model, VP-SDE [33, 90], as a
baseline measure of performance and error in adherence to equivariance properties, along-
side SP-GAN [3], the only GAN-based model with theoretical group invariance guarantees,
and report the mean performance of GE-GAN [18]. These are pitted against the VP-SDE
diffusion models conditioned using the techniques Section 5.2.1 referred to respectively as
SPDM+WT, SPDM+Reg, and SPDM+FA.

The performance results of each model on Rotated MNIST are reported in Table 5.1
with LYSTO and ANHIR reported in Table 5.2. To ensure benchmark consistency, we
reproduced the results of SP-GAN and GE-GAN. FID was computed using the standard
InceptionV3 model with features averaged over the chosen invariance group; details of our
FID calculation are provided in Appendix B.1. We note the reproduced FID values of GE-
GAN are significantly higher than those self reported in [18]. This is due to the author’s
fine-tuning the InceptionV3 model on the LYSTO and ANHIR datasets. While we include
these results in the table for reference, the scores are not comparable with other FIDs due
to fine-tuning. All FIDs are based on 50,000 randomly generated images in order to ensure
low variance in the FID computation.

As shown in Table 5.1, diffusion models with theoretical guarantees tend to achieve
lower Inv-FID and ∆x̂0 scores. Interestingly, the differences in Inv-FID scores across dif-
fusion models are relatively small, corroborating the statement that VP-SDE diffusion
models are structure preserving in principle. Therefore, in situations where invariance in
the sampling distribution is not crucial, standard diffusion models may be sufficient. How-
ever, differences emerge between diffusion models when evaluating ∆x̂0, where only the
equivariant models prove capable of accurate equivariant sampling.

Experiment: Image denoising As image up-scaling, denoising, and sharpening are
common applications for diffusion models, we propose a denoising (or deblurring) task for
evaluating model performs on denoising images under a rotational invariance prior. To
create this dataset, LYSTO (64x64x3) patches are downscaled to (16x16x3) using linear

6This dataset is under restricted license and due to patient privacy concerns, we are not able to distribute
any related data or model checkpoints.
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Table 5.1: SPDM Robustness to lack of data
C4 MNIST.

FID↓ Inv-FID↓ ∆x̂0 ↓
Model 1% 5% 10% 100% 100% 100%

VP-SDE 5.97 3.05 3.47 2.81 2.21 0.2997
SPDM+WT 5.80 3.34 3.57 3.50 2.20 0.0004
SPDM+FA 5.42 3.09 2.83 2.64 2.07 0.0002
SPDM+Reg 5.42 3.69 2.83 2.75 2.09 0.1806
SP-GAN 149 99 88 81 – –
SP-GAN (Reprod.) 16.59 11.28 9.02 10.95 19.92 –
GE-GAN – – 4.25 2.90 – –
GE-GAN (Reprod.) 15.82 7.44 5.92 4.17 58.61 –

Table 5.2: SPDM Comparison on LYSTO
and ANHIR.

LYSTO ANHIR

Model FID↓ Inv-FID↓ ∆x̂0 ↓ FID↓ Inv-FID↓ ∆x̂0 ↓

VP-SDE 7.88 0.66 20.77 8.03 0.57 39.82
SPDM+WT 12.75 0.59 0.00 11.73 0.43 0.00
SPDM+FA 5.31 0.6 0.00 7.57 0.31 0.00
SP-GAN 192 – – 90 – –
SP-GAN (Reprod.) 16.29 0.66 – 17.12 0.28 –
GE-GAN 3.90 – – 5.19 – –
GE-GAN (Reprod.) 23.20 27.84 – 14.16 6.87 –

interpolation and training pairs are formed, (Iblur, Iref ), between the downscaled condition
and reference image.

For comparison, we train a diffusion bridge model (DDBM) [103], the popular style-
transfer method Pix2Pix [40], and the unconditional diffusion bridge model I2SB [59].
These are compared against an equivariant DDBM implementation, denoted SPDM+FA,
equipped with a modified sampling procedure that utilizes FA and a precomputed noise se-
quence to fix image orientation during sampling. All models are implemented in pixel-space
for this comparison. Model performance metrics are reported in Table 5.3. The SPDM+FA
performed best across all evaluation metrics, particularly in ∆x̂0 reconstruction.

Experiment: CT-PET style transfer For the CT to PET scan style-transfer task, we
make use of the CT-PET dataset [26] by attempting to transform a patient’s CT scan into
the matching PET scan. As baselines for this task, we consider again implementations of
DDBM, Pix2pix, and I2SB. These are compared against a DDBM model that is modified
in a similar way to that in the above image denoising task, denoted SPDM+FA, with the
model utilizing FA to ensure invariance to horizontal image flipping. Due to GPU memory
limitations, it was necessary to modify both DDBMs and I2SB to act on latent spaces in
the fashion proposed in [83]. See Section 5.5 for further implementation details.

As can be seen in the Table 5.3 the SPDM+FA implementation achieves the lowest
FID and invariant reconstruction error ∆x̂0 of all the tested models.
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Table 5.3: SPDM Comparison on LYSTO denoising and CT-PET style transfer datasets.

LYSTO CT-PET

Model FID↓ L1 ↓ SSIM↑ ∆x̂0 ↓ FID↓ L1 ↓ SSIM↑ ∆x̂0 ↓

DDBM 17.28 0.076 0.696 0.8884 18.13 0.041 0.861 0.9233
SPDM+FA 16.21 0.071 0.721 0.0001 17.74 0.042 0.860 0.0000

Pix2Pix 78.43 0.087 0.654 0.8629 20.26 0.043 0.862 1.3196
I2SB 20.45 0.073 0.722 0.8683 27.51 0.051 0.832 1.2123

5.4 Manifold structure preserving diffusion models

If the domain we happen to be operating within has a symmetric density under some
group isometry, then, for Euclidean domains, we may apply the results and techniques
from Section 5.1 to aid in task learning. Now, as much of our interest lies in learning tasks
over manifolds, we should point out the proposed approach differs from [63] which exploits
symmetry of the domain to improve score matching estimation for domains with curvature
by instead exploiting symmetry of the distribution.

In setting up the example, we note the theorem in [65], as written, does not immediately
extend to domains with local curvature. Thus, we will limit the immediate presentation
to a Euclidean region that is encompassed by the developed theory without the need for
modification.

Experiment: Symmetric density estimation on (Euclidean) disc Here we demon-
strate the application of +FA, as outlined above, to the problem of learning a toy (sym-
metric) density over a symmetric domain; in particular, we consider the domain D from
Section 4.1 equip with polar coordinates and density function p(r, θ) = 1

A
h(r, θ) where

h(r, θ) =

∫ 2π

0

∫ 1

1/4

g(r′, θ′)G(r − r′, θ − θ′)r′ dr′ dθ′

with the component functions equal to

g(r, θ) =

{
ρ1 if cos(κθθ) sin(κrr) > 0

ρ2 otherwise.
, G(r′, θ′) =

1

πσ2
exp

{
−r′2 − θ′2

2σ2

}
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for 1 ≥ r ≥ 1/4 and where ρ1, ρ2, κθ, κr, σ are chosen constants, and we have the normal-
izing factor

A =

∫ 1

1/4

∫ 2π

0

h(r, θ)r dθ dr.

An illustration of this density, that has been smoothed using a non-zero Gaussian kernel,
is illustrated in Fig. 5.1.

(a) (b)

Figure 5.1: Plot of proposed radial checkerboard density function over a unit disc with a
hole punched through the center (a) along with (uniform) rejection sampled approximation
(b) which is used for model training.

Here we train a (non-equivariant) DDPM and SPDM+FA model (without domain
constraints – for 0 ≤ r ≤ 1) on this dataset under the Cκθ group, for κθ = 5, since
the density is invariant under such rotations about the origin. All models are trained over
500, 000 steps using a batch size of 10, 000, and 100 diffusion steps. The learned densities
are sampled and illustrated in Fig. 5.2. It is apparent in the figure the SPDM+FA model
was better able to learn the high frequency information present towards the center of the
distribution, moreover, the model converged faster on the macroscopic features based on
incremental qualitative observations made every 20,000 steps.

5.4.1 Structure preserving reflected diffusion

As noted in [61], the addition of the reflected term does not alter the general form of the PF-
ODE [90], so the core proposition from [65] remains true under reflected diffusion, at least
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(a) (b) (c)

Figure 5.2: Sample comparison of radial checkerboard density distribution between
(a) reference rejection sampled density, (b) DDPM (non-structure preserving), and (c)
SPDM+FA.

when integrating. Consequently, provided the domain is Euclidean, we may immediately
apply the techniques from Section 5.3 to the reflected setting, under appropriate alterations
for training a using reflected noise, as discussed in Section 4.2.

Experiment: Symmetric density estimation on constrained disc Here we reuse
the synthetic density from Section 5.4, but add the boundary constraints of the data
domain, namely, defining a ϕ function according to Section 4.1 and incorporating this into
the score prediction via Eq. (4.2).

As the limiting distribution of the reflected diffusion process is only locally Gaussian,
we can no longer use the mean prediction denoising diffusion paramterization, see Eq. (2.7),
and must either train the model to predict xt using CDSM or predict the score directly
using implicit score matching. As done in Section 5.4 we train a set of diffusion models to
illustrate the differences between using Gaussian noise and reflected noise in the presence
of boundary constants: (a) DDPM trained to predict xt directly, (b) DDPM trained using
Eq. (3.3) without and with (c) FA, (d) reflected variant of DDPM predicting xt, and lastly
(e) reflected DDPM using Eq. (3.3) without and with (f) FA. The model (a)-(d) where
trained on 500,00 steps, while (e)-(f) proved much more sensitive to the training procedure
requiring the use of gradient clipping and a lower learning rate and consequently additional
training steps. Further implementation details can be found in Section 5.5.

A qualitative comparison between these models is shown in Fig. 5.3. To see the effect
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Sample comparison of (a) DDPM, (b) DDPM+FA, (c) FFPM+cISM+FA, (d)
reflected DDPM, (e) reflected DDPM+cISM, (f) reflected DDPM+cISM+FA.

of the boundary condition and reflected diffusion on the learned vector field, we plot the
vector field learned by models (c) and (f) in Fig. 5.4 over a subsequence of time-steps. It is
plane that (f), despite its comparably worse sample quality, faithfully captures the domain
boundary constraints while (c) does not.

5.4.2 Structure preserving Riemann diffusion models

We will now show an extension of Theorem 4 to diffusion processes with zero drift to
symmetric Riemann manifolds. While this setting is restrictive, it is worth noting that
the zero drift manifold diffusion SDE Eq. (3.1) is the most commonly used in practice,
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t=0 t=20 t=40 t=49

t=0 t=400 t=700 t=999

Figure 5.4: (top) Incremental flow visualization of learned Stein score from a trained DDPM
at time steps t = 0, 20, 40, 49, and (bottom) reflected DDPM with boundary constraint
at time steps t = 0, 400, 700, 999, both trained on the dataset described in Section 5.4.
Inspecting these plots, there is a clear separation between the interior and exterior flow for
the reflected DDPM while the regular DDPM has no such distinction.
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[24, 63, 77, 14], due to the additional complications that would be incurred from having
to compute the drift term w.r.t. local curvature; moreover, most application discussed in
the forgoing works operate on symmetric spaces, so the restriction to this kind of domain
is not impractical or unfounded.

Lemma 2. For a symmetric Riemannian manifold (M, g), a distribution p0(x) that is
invariant under the Isometry group IM of M, a manifold Brownian motion (

−−→
BMt )t≥0 de-

fined until some time T > 0, and a monotonically increasing fucntion σ : [0, T ] → R≥0,
the marginal distributions pt induced of the stochastic process (

−→
X t)t≥0 characterized by the

SDE

d
−→
X t = σ(t) ◦ d

−−→
BMt

are invariant under the Isometry group IM.

The following proof sketch is a direct consequence of [29, Sec.9 Thm.9.12] in combination
with Definition 21, and is provided to clarify the connection to the work presented above
and setup further discussion and terminology.

Proof. To begin with, let (M, g) be a symmetric d-dimensional orientable Riemann man-
ifold equipped with metric g isometrically embedded with ϕ : RD ↪→ M; so that we
might consider a weighted Riemann manifold (M, g, µ) with the Lebesgue measure dλ.
Let G ⊆ IM be a semi-group of the isometry group IM ofM. Recall from Corollary 1 the
distribution of the stochastic process (

−→
Xt)t≥0, with dynamics d

−→
X t = σ(t) ◦ d

−−→
BMt can be

described by a transition kernel pt(x, y) that admits a density of the form:

∂

∂t
pt(x) =

σ2(t)

2
(∇ · ∇)Mpt(x),

which is unique over any bounded domain D ⊆M

pt(x) =

∫
D
pt(x, y)f(y) dy

for any smooth compactly supported function f . As a consequence of [29, Sec.9 Thm.9.12]
the transition kernel pt(x, y) is invarant under G; i.e., for all κ ∈ G

pt(Lκx, Lκy) = pt(x, y),
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provided p0 is invariant. Thus, we see for any κ ∈ G

pt(Lκx) =

∫
D
pt(Lκx, y)f(y) dy

=

∫
L−1
κ D

pt(Lκx, Lκz)f(Lκz) dz

=

∫
L−1
κ D

pt(x, z)f(Lκz) dz

= pt(x).

Given the above lemma, we can now state a corollary that shows the sufficient condition
of Theorem 4 from [65] extends to zero-drift diffusion processes over Riemann manifolds.

Corollary 3. Let (M, g) be a symmetric d-dimentional Riemannian manifold, (
−−→
BMt )t≥0 a

manifold Brownian motion defined until some time T > 0, and consider the SDE

d
−→
X t = σ(t) ◦ d

−−→
BMt

where σ : [0, T ] → R≥0 is a smooth monotonically increasing function. This diffusion
process is structure preserving if and only if the Stine score of the admitted density satisfies

∇Lκx log pt(Lκx) = dLk|x∇x log pt(x)

for all κ ∈ G ⊆ IM and x ∈M.

Proof. From Lemma 2, it has already been established that pt is invariant, thus, all that
remains is to validate the truth of the equality above. In particular, assume (M, g) is a
symmetric compact (or locally compact) orientable d-dimensional Riemann manifold equip
with the Riemann metric g and is isometrically embedded via the map ϕ : RD ↪→M. Let
G ⊆ IM be a semi-group of the isometry group of M. Then ∀κ ∈ G and ∀x ∈ M by the
Riemann chain rule

∇x log pt(Lκx) = (dLκ|x)∗(∇Lκx log pt(Lκx)

= dLκ|−1x ∇Lκx log pt(Lκx),

which implies

∇x log pt(Lκx) = dLk|x∇x log pt(x).
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Table 5.4: Comparison on symmetric sphere densities.

Dotted density Checkerboard density

Init. rNet rNet+FA Init. rNet rNet+FA

NLL (↓) 2.51 0.52 0.31 2.53 1.38 1.30

While the proof of Corollary 3 is somewhat trivial, due to the global assumptions on
M, the result is no less important. Many existing works implicitly assume this equivalence
between score differentiation and transformation when utilizing FA on non-Euclidean do-
mains, namely molecule conformation. Informally, is it easy to convince yourself why the
above result is true; take S2 = {x ∈ R3 | ∥x∥ = 1} defined as a subspace of R3, which
possess the isometry group IS2 = SO(3), the (Lie) group of all rotations in R3 which can
be represented as orthogonal matrices of determinate one. For any v ∈ TxS2 ∼= R2 it can
be seen that7

dLκ|x(v) =
d

dt
Lκ(x+ vt)

∣∣∣∣
t=0

= κv.

The uniformity of this result being due to the curvature symmetry of the space.

Experiment: Symmetric dotted density estimation on sphere Before attempt-
ing a challenging learning task on a sphere, we designed a toy dataset that consists of
two equidistance bands of circles projected onto the unit sphere S2. This density is, by
construction, C16 invariant about the z-axis. A scatter plot illustration of the constructed
density is presented in Fig. 5.5a.

We train two models on this dataset, both based on a ResNet [30], using the score
matching technique proposed in [63] with and without modification to include FA. We
report the best achieved negative log likelihood (NLL) performance of each model, named
rNet and rNet+FA respectively, along with a random initialization performance score as a
basedline, denoted Init., in Table 5.4.

Experiment: Symmetric density estimation on sphere As another benchmark, we
generalize the symmetric distribution p(ω, ν) = 1

V
j(ω, ν) construction in Section 5.4 to a

(unit) sphere S2, isometrically embedded into R3, for a checkerboard density distribution
7Here I just picked a simple geodesic curve parameterized using t.
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(a) (b)

Figure 5.5: Scatter plot visualization of 100,000 randomly sampled points from (a) dotted
spherical density and (b) checkerboard density on (unit) sphere.

j : S2 → R≥0

j(ω, ν) =

{
ρ1 if cos(kωω) · cos(kν(ω)ν) ≥ 0

ρ2 otherwise,

where ρ1, ρ2, kω ∈ R are chosen constants, kν : R→ R>0 is a azimuthal frequency function
that increased towards the pol defined as

kν(ω) = kb · 2
n−

2n|ω − π/2|
π


,

kb ∈ R the base equatorial frequency, n the number of frequency doublings towards the
pol, and V is the volume of integration given by integrating j over the torus w.r.t. the
volume element dµ =

√
det(g) dλ; i.e.,

V =

∫ 2π

0

∫ 2π

0

j(ω, ν)
√

det(g) dω dν.

An illustration of this density is given in Fig. 5.5b. This distribution is C2kb invariant w.r.t.
transporting points around the z-axis of the sphere.

As with the above experiment, we train two ResNet models and evaluate their NLL
performance on this dataset, the values of which are reported in Table 5.4. Clearly, based
on the achieved NLL scores, this dataset proved to be significantly more challenging to
learn than the dot dataset, nonetheless, the incorporation of FA enabled the second model
to learn a more accurate score.
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5.5 Implementation details

We implemented various generative model architectures for the experiments presented in
the preceding chapter. This includes regular diffusion models and bridge diffusion models
(DDBM) based on VP-SDEs, which are structure-preserving with respect to C4, D4, and
flipping, as per [65]. Except for SPDM-WT, all models are trained with data augmentation
using randomly selected operators from their respective groups along with the standard
slew of augmentation techniques intended to improve model robustness.

To boost the performance of SP-SDE and DDBM model architectures, we apply the
boundary condition parameterization proposed in [48] and self-conditioning [10] to improve
sample quality. The model code and training details are documented in the respective
GitHub repositories for each experiment.

Specifically, for Rotated MNIST, LYSTO, and ANHIR, we use SPDM8 along with
modified versions of GE-GAN and SP-GAN9.

For the style transfer tasks involving LYSTO and CT-PET, we implemented a modified
version of DDBM designed to operate in latent space, as proposed in [83]. This implementa-
tion is based on the VAE used in Stable Diffusion v1-4, fine-tuned on the CT-PET dataset
while applying flipping augmentation using FA to ensure the encoder is invariant to hor-
izontal flips. This approach transforms the (256×256×3) data into a (32×32×4) latent
space. The alteration was necessary due to memory constraints on the utilized NVIDIA
L40S GPUs (40GB), which did not allow effective training of the previously used U-Net
backbone at higher resolutions. This implementation of SPDM10 is available alongside
similarly modified implementations of Pix2Pix11 and I2SB12.

For the toy dataset experiments with and without reflected noise (Section 5.4), we
implemented an MLP13 along with the training algorithms detailed in Section 4.2. Lastly,
for the manifold extension experiment (Section 5.4.2), we developed a ResNet14 based on
the models used in [63].

8https://github.com/SpencerSzabados/Group-Diffusion
9https://github.com/SpencerSzabados/SP-GAN

10https://github.com/SpencerSzabados/Group-Diffusion-Bridge
11https://github.com/SpencerSzabados/pix2pix
12https://github.com/SpencerSzabados/I2SB
13https://github.com/SpencerSzabados/reflected-diffusion-mlp
14https://github.com/SpencerSzabados/group-diffusion-manifold
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Chapter 6

Motion planning

The task of motion planning is to generate a safe path (or trajectory of motion) for a
robot under a set of motion constraints to achieve a supplied task (or objective). Motion
planning has its roots in long time horizon reinforcement learning [95] and control systems
[13, 97]. While there are many domain specific variations to motion planning, the one we
will be concerned with is that of generating collision free motion paths for robot navigation
and multi-segment robot arms, as considered within [43, 8].

Specifically, within Euclidean space, let w = [s, a] ∈ Rd×2 encode the state of the robot
along with the actions needed to take the robot from its current state to the next (e.g.,
s might encode the state of a robot arm and a the joint velocities needed align the end
effector at the next discrete position along an ascribed trajectory); that is, we assume the
dynamics of the robot follow discrete-time steps with dynamics si+1 = f(si, ai). Rather
than attempting to encode a continuous trajectory it is common practice to approximate
the trajectory using a sequence of way-points, τ = (w1, . . . , wH−1, wH) ∈ R(d×2)×H , at key
points along the robot’s path. In order to formulate planning tasks as a reinforcement
learning problem, we must introduce a reward function and some way of encoding the
optimally of a trajectory. To this end, let O = (Oi)

H
i=1 be a time indexed sequence of binary

random variables where Oi encodes the optimally of the way-point wi with P(Oi = 1) ∝
exp{R(si, ai)}, where R : Rd×2 → R≥0 is a (composite) reward function (or cost function)
used to evaluate the robot’s ability at reaching optimal positions along trajectories (along
with the smoothness of the trajectory, collision avoidance, etc). Within the described
environment, motion planning can be formulated as the maximization problem:

τ ∗ = argmax
τ

H∑
i=1

λiR(si, ai), (6.1)

where 1 ≥ λi ≥ 0 are reward discounting weights; [95], these weights are often constructed
to be monotonically increasing, putting more weight on achieving the long run task over
immediate rewards near the initialization point.
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Once a suitable trajectory is found, it is subsequently the task of a “low-level” (hardware
specific) control system to execute and maneuver the physical robot. This separation
between optimization and physical control, where a generated trajectory is plugged into
an existing classical trajectory control routine, is the most common framework employed
for sampling based planning methods, see [43, 8], largely due to its simplicity.

As eluded to, we will focus on sampling-based (or planning as inference) methods for
generating (optimizing) trajectories [21], as opposed to the motion optimization setting dis-
cussed in [98], where trajectories are sampled from an informed prior distribution which is
either refined from example dataset or heuristic approaches to result in a collision free path.
That is, given an environment prior p(τ), which in some capacity represents boundaries of
the environment, our goal is to sample from the posterior distribution:

p(τ |O) ∝ p(O|τ)p(τ), (6.2)

where p(O|τ) represents the likelihood of achieving the planning objective goals. In order
to simplify sampling and construct more informed priors, it is assumed classically [98] that
p(O|τ) can be factored into independent components:

p(O|τ) ∝
H∏
i=1

pi(Oi|τ)αi , (6.3)

where αi ≥ 0 are annealing temperatures for the different objective distributions [85,
47] with pi(Oi|τ) ∝ exp{Ri(τ)} for the index reward function Ri; e.g., these objective
distributions might be used to preferentially optimize the long term goals of the trajectory
opposed initial accuracy.

6.1 Motion planning using diffusion

Having elucidated the generic trajectory planning task considered, we now describe how this
task can be approached using diffusion models. Under the planning as inference scheme,
diffusion models are used to parameterize the objective prior p(O|τ) in the trajectory
sampling procedure. We follow the framework proposed in [43, 8]1 which makes use of
the DDPM framework, outlined in Section 2.2, and a modified U-Net to generate multi-
segment trajectories encoded as a sequence of time-correlated way-points with a specified
time horizon.

1Aspects of the sampling procedure(s) were necessarily redervied below as some details were omitted
in the aforementioned paper.
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Begin by assuming τ0 ∼ p0, where p0 is the data distribution for trajectories over a
given domain D ⊆ Rd which obey the planning objectives O. Recall, per the diffusion
process outlined in Section 2.2, the discrete step transition kernel admitted by a forward
diffusion process, under the VP-SDE, can be expressed as

p(τt|τt−1) = N (τt;
√

1− βtτt−1, βtI).

Then in order to sample from Eq. (6.2), we consider a diffusion model parameterized as

p(τ0|O) = p(τT |O)
T∏
t=1

pθ(τt−1|τt,O) (6.4)

starting from τT ∼ N (0, I); i.e., p(τT |O) = N (τT ; 0, I). In order to incorporate the planning
objectivesO into this task the authors of [8] modify the sampling procedure in a similar way
to classifier-free-guidance [34], biasing the sampling towards loss cost regions by modifying
the gradient updates, sampling from this distribution by iteratively sampling the task-
conditioned posterior(s):

pθ(τt−1|τt,O) ∝ pθ(τt−1|τt)pt(O|τt−1).

To derive the planning objective gradient updates, recall from Section 2.2, for scalar diffu-
sion coefficients the backwards transitions kernels can be approximated as:

log pθ(τt−1|τt) = logN (τt−1;µθ(τt, t), βtI) (6.5)

∝ −1

2
(τt−1 − µθ)⊺(βtI)−1(τt−1 − µθ)

and, via a first order taylor expansion around µt

log p(O|τt−1) ≈ log p(O|µt) + (τt−1 − µt)∇τ log p(O|µt); (6.6)

Then under Eq. (6.3), factoring p(O|τ), we get by combining Eqs. (6.5) and (6.6)

log pθ(τt−1|τt,O) ∝ −
1

2
(τt−1 − µθ)⊺(βtI)−1(τt−1 − µθ) + (τt−1 − µt)∇τ log p(O|µt)

+ log p(O|µt)

∝ −1

2
(τt−1 − µθ)⊺(βtI)−1(τt−1 − µθ) + (τt−1 − µt)∇τ log p(O|µt)

− 1

2
(τt−1 − µt)⊺(βt−1I)−1(τt−1 − µt) (assuming p(O|τ) is Gaussian.)
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∝ −1

2
(τt − µθ − βt∇τ log p(O|µt))⊺(βtI)−1(τt − µθ − βt∇τ log p(O|µt))

− 1

2
(τt−1 − µt)⊺(βt−1I)−1(τt−1 − µt). (assuming µt ≈ µθ.)

∝ −1

2
(τt − µθ − βt∇τ log p(O|µt))⊺(βtI)−1(τt − µθ − βt∇τ log p(O|µt))

Sampling is then performed by making use of the reparameterization trick, interactively
evaluating the Langrangian dynamics:

τt−1 = µθ(τt, t)−∇τ log p(O|µt) +
√
βtz, z ∼ N (0, I).

The gradient update, under the factorization assumption in Eq. (6.3), bias trajectory
samples towards those that are more likely to satisfy the planning objectives; specifically,
we have by construction

∇τ log p(O|µt) =
H∑
i=1

λi∇τRi(τ).

As an aside, it is because of the fact that we formulate the planning problem in terms
of learning (diffusing) the entire trajectory (at a fixed length) as opposed to learning an
optimal policy at each step, as done in the more recent work [41], which sequentially
generates the trajectory with the score posing as the learned planning policy, we are able
to guild the entire trajectory during sampling.

Experiment: Point-mass robot with circular objects. Here we reproduce the re-
sults from [8], training a model based on the configuration provided by the authors.

Fig. 6.1 contains trajectories generated from a trained diffusion model with reward
guidance which is either enabled or disabled during sampling. The objects in (red) are
extra objects added outside of model training, while the objects in (grey) are static objects
present in both training and inference. Sample statistics are reported in Table 6.1.

As can been seen from Fig. 6.1a and Fig. 6.1b, the model performs reasonably well
at avoiding trajectories in its original training environment, but without guidance fails to
respect the underlying geometry on which it was trained. This issue is further highlighted
in Fig. 6.1c and Fig. 6.1d. A diffusion model that is geometry aware should elevate this
problem for the unperturbed training environment, as no sampled trajectories will intersect
obstacles.
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(a) Trajectories sampled using guidance. (b) Trajectories sampled without guidance.

(c) Trajectories sampled using guidance. (d) Trajectories sampled without guidance.

Figure 6.1: Sample trajectories drawn from motion planning diffusion model trained using
reward guidance, as formulated in Section 6.1.

6.2 Motion planning on constrained (Euclidean) mani-
folds

We will now outline a hybrid RL reflected diffusion motion planning framework that offers
to produce, in some sense, verification free trajectories. This has the primary benefit of
reducing the number of required samples until a valid trajectory is produced to one.
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Environment Guidance Non Coll. (%) Coll. Intensity Waypoint Var. Lowest Cost
Circles2D Yes (99.8, 99.9, 100.0) (0.0, 0.004, 0.004) (0.73, 0.80, 0.82) (2.32, 2.41, 2.49)
Circles2D No (97.6, 98.2, 98.7) (0.11, 0.18, 0.21) (0.69, 0.75, 0.78) (2.31, 2.41, 2.48)
Circles2D+Extra Yes (35.4, 36.7, 34.8) (1.25, 1.38, 1.48) (0.33, 0.35, 0.45) (2.59, 2.74, 2.76)
Circles2D+Extra No (0.2, 0.5, 0.8) (20.12, 21.03, 21.25) (0.01, 0.04, 0.80) (2.76, 3.08, 3.13)

Table 6.1: Table includes sample statistics for a batch of 50 trajectories sampled with,
see Figs. 6.1a and 6.1c, and without guidance, see Figs. 6.1b and 6.1d. The first two
rows are from the unchanged sample environment, the last two correspond to the altered
environment with additional obstacles added.

This framework operates by converting any fixed obstacle avoidance rewards into do-
main constraints which are avoided by replacing the standard diffusion sampling with
reflected diffusion, Chapter 4, over the newly constructed domain; this hybrid approach
is inspired by existing sampler-optimization based approaches, however, hard constrains
are enforced by reflected steps rather than an optimizer. Given a set {bi}i∈I of obsta-
cles, corresponding to some partial rewards ri(st, at) for some waypoint wt = [st, at] on a
trajectory, we construct a matching set of smooth boundaries {ϕi(x)}i∈I that outerbound
these obstacles (.e.g. performing the Minkowski sum with a ϵ-ball) and define the domain
D as above. Letting O′ and R′ denote the modified set of planning objectives O and re-
ward function R without fix obstacle avoidance criteria. Then, keeping everything else the
same, the planning objective Eq. (6.1) outlined above can be expressed as the constrained
problem:

τ ∗ = argmax
τ∈D

T∑
t=1

λiR
′(st, at).

Now as the transition kernels of reflected diffusion processes are only local martingales (e.g.,
local Brownian monition), the sampling formulation of Section 6.1 must be appropriately
modified, in particular, we consider the forwards heat SDE

d
−→
X t = σt ◦ d

⇝
Bt ;

which, under T discretization steps for a general domain D, must be simulated (e.g., using
Algorithm 6). It is necessary to alter the model to do score prediction directly to ensure the
theoretical guarantees; however, to begin with, we offer a proximal solution in Section 6.2.

Proxy reflected motion planning. The following is performed under the assumption
that for sparse objects the local distribution is sufficiently close to Gaussian so the model
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will be able to learn the score via mean prediction (i.e., via τ0 reconstruction).

For national simplicity, let qt(τt|τt−1) denote the approximate transition kernel that
arises from simulating k steps of the reflected diffusion process. Then Eq. (6.4) takes the
form

q(τ0|O) = q(τT |O)
T∏
t=1

qθ(τt−1|τt,O)

starting from τT ∼ qT . As before, we incorporate the remaining planning objectives by
modifying the (backwards) sampling process via

qθ(τt−1|τt,O) ∝ qθ(τt−1|τt)qt(O|τt−1)

by treating the unconstrained pθ(τt−1|τt) as a proxy to the true constrained dynamics
qθ(τt−1|τt) and iteratively evaluating rejecting samples that violate the constrains; training
and sampling processes used are given in Algorithm 7 and Algorithm 8 respectively.

Algorithm 7: Reflected Motion Planning Diffusion Training.
Consider diffusion over the manifold D with {ϕi}i∈I a set of constraints that define
∂D, J be a set of collision-free trajectories in D, T ≥ 0 be a given stopping time,
N > 0 the number of discretization steps, η > 0 a learning rate, set of model
parameters θ to be optimized.
Data: {ϕi}i∈I ,J , T,N, η, θ
Result: θ

1 while training do
2 τ0 ∼ J , t ∼ U(0, T ); /* Sample trajectory batch and time. */
3 τt ← ReflectedStep({ϕi}i∈I , t, N, τ0); /* Simulate SDE trajectory. */
4 L ← LCDSM(τt, θ); /* Compute loss. */
5 θ ← θ + η∇θL
6 return θ

Experiment: Proxy reflected point-mass robot with circular obstacles. Here
we reconsider the same environment motion planning problem from Section 6.1. As before
the objects in (red) are extra objects added outside of model training, while the objects
in (grey) are static objects present in both training and inference. Sample statistics from
several configurations are reported where the (min, mean, max) statistics are computed
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Algorithm 8: Reflected Motion Planning Sampling.
Consider diffusion over the manifold D with {ϕi}i∈I a set of constraints that define
∂D, set of trained model parameters θ, pair of desired start and end states s0, sT ,
T ≥ 0 be a given stopping time, N > 0 the number of discretization steps, κ > 0
a number of warm-up steps, motion planning reward function R
Data: {ϕi}i∈I , θ, s0, sT , T,N, κ,R
Result: τ0

1 p ∼ U(D) ; /* Randomly sample trajectory in domain. */
2 τT ← ReflectedStep({ϕi}i∈I , T,N, p) ; /* Generate noisy trajectory */
3 τT [0] = s0, τT [T − 1] = sT ; /* Enforce start and end states. */
4 for t = T, . . . , 1 do
5 µ̃t ← µθ(τt, t)

6 g ← −
∑N

i=1 λi∇τt−1Ri(τt−1); /* Apply guidance to trajectory. */
7 τt−1 ← µ̃t + g +

√
βtz for z ∼ N (0, I)

8 τt−1[0] = s0, τt−1[T − 1] = sT

9 return τ0

across the random seeds {0, 1, 11, 42, 4242, 438233955} from which the (min, median, max)
of each metric is computed. The start and end points of the desired trajectory are fixed
across all evaluations.

We trained two reflected proxy models on this planning task, the first being trained
without velocity guidance, reported in in Table 6.3, and the second trained with velocity
guidance, reported in Table 6.2.Fig. 6.2 contains sampled trajectories from the reflected
diffusion model trained with velocity guidance, with this guidance enabled or disabled
during sampling. As can be seen, these models – despite being proxies – perform on par
with the baseline model for the first two scenarios; however, these models are not as able
to adapt to domain changes with the addition of the (red) obstacles. It is our suspicion
that this technique would perform far better once implemented in accordance with the
discussion in Section 4.2. With that said, these experiments do serve to illustrate the
potential for future work applying reflected diffusion to motion planning tasks.
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(a) Trajectories sampled using guidance. (b) Trajectories sampled without guidance.

(c) Trajectories sampled using guidance. (d) Trajectories sampled without guidance.

Figure 6.2: Sample trajectories drawn from motion planning (reflected) constrained diffu-
sion model trained with and without using reward guidance, as formulated in Section 6.2.
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Environment Guidance Non Coll. (%) Coll. Intensity Waypoint Var. Lowest Cost
Circles2D Yes (99.2, 99.4, 99.5) (0.02, 0.03, 0.03) (0.29, 0.26, 0.28) (3.30, 3.31, 3.37)
Circles2D No (73.7, 74.2, 75.2) (1.29, 1.34, 1.52) (0.302, 0.318, 0.362) (3.19, 3.26, 3.37)
Circles2D+Extra Yes (0.0, 0.0, 0.4) (8.11, 8.26, 8.36) (1.22, 1.27, 1.64) (4.51, 4.57, 4.38)
Circles2D+Extra No (0.0, 0.0, 0.0) (34.94, 35.25, 35.27) nan nan

Table 6.2: Table includes (min, mean, max) sample statistics for a batch of 1000 trajectories
sampled with, see Figs. 6.2a and 6.2c, and without guidance, see Figs. 6.2b and 6.2d. The
first two rows are from the unchanged sample environment, the last two correspond to the
altered environment with additional obstacles added.

Environment Guidance Non Coll. (%) Coll. Intensity Waypoint Var. Lowest Cost
Circles2D Yes – – – –
Circles2D No (94.1, 96.6, 97.2) (0.207, 0.301, 0.450) (0.345, 0.375, 0.398) (2.89, 3.09, 3.28)
Circles2D+Extra Yes – – – –
Circles2D+Extra No (0.0, 0.0, 0.1) (28.25, 28.67, 28.96) nan (4.67, 4.67, 4.67)

Table 6.3: Table includes (min, mean, max) sample statistics for a batch of 1000 trajectories
sampled with and without guidance. The first two rows are from the unchanged sample
environment, the last two correspond to the altered environment with additional obstacles
added.

6.3 Implementation details

Following the work of [43] a temporal U-Net is used to encode the trajectories as a chain
of time correlated way-points. We incorporated a modified version of the score parameter-
ization used in [61] into our U-Net 2 implementation and simulate the reflected noise as
described in Section 4.2.

2https://github.com/SpencerSzabados/Motion-Planning-Diffusion-Manifold
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Chapter 7

Conclusion

In summary, we have aimed to guide the reader through a range of concepts related to
diffusion-based generative models, beginning with their foundational continuous processes
and then considering their discrete counterparts. By extending the basic Euclidean frame-
work to settings involving manifolds — whether constrained or not — we have sought to
illustrate methods for more effectively modeling data that resides in non-Euclidean spaces
or within bounded domains. Although this exploration is by no means exhaustive, it is
the author’s belief the material presented herein offers a reasonably thorough and accurate
overview of the current state of diffusion modeling.

A central focus of our study was the notion of structure-preserving diffusion models in
which known symmetries or invariants can be directly integrated into the modeling pro-
cess provided given conditions on the form of the diffusion equation are satisfied. Beyond
the illustrative toy examples for reflected and manifold diffusion, we have also touched
upon practical applications, notably in image generation and reconstruction in and med-
ical imaging, which were shown to benefit from the inclusion of the techniques developed
herein. Beyond this, we briefly touched on applications of reflected diffusion to motion
planning, highlighting some experimental results that suggest the broader applicability of
non-standard diffusion models in robotics.

While there remains much ground to cover, we hope the contributions outlined here
will serve as a meaningful foundation for further research, guiding ongoing efforts to refine
and expand both the theoretical and applied dimensions of diffusion modeling.
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Appendix A

Definitions and background

Here we introduce various definitions and concepts from optimization and differential ge-
ometry that are used throughout the text. As there is a lot of subtly in the domains we are
interested in and differences in notation between sources, we set forth some standard defi-
nitions and properties in an effort to make this thesis, at least in part, more self contained
and digestible.

A.1 Topology

We will begin by introducing the notion of a topological space and coordinate charts.

Definition 8 (Topological space, see [71]). A topological space is a set X along with a
associated collection Ω ⊆ P(X) of subsets of S defined to be the open sets of X, which
define the topology on the space, satisfying:

1. ∅ ∈ Ω and X ∈ Ω;
2. if A,B ∈ Ω then A ∩B ∈ Ω;
3. for any index set I,

⋃
i∈I Ai ∈ Ω; i.e., the arbitrary union of open sets is itself open.

The topological space is the ordered pair (X,Ω).

In the following, we always assume we are dealing with the usual topology on X ⊆ Rd

unless this does not make sense from context.

Definition 9 (Chart, see [71, 7]). A chart (V, ϕ) on a topological space (X,Ω) is an open
subset V ⊆ X together with an open embedding, ϕ : U ↪→ V where U ⊆ Rd, that maps open
sets to open sets of the respective topologies.

Definition 10 (Connected). Let X be a topological space. A separation of X is a pair
U, V ⊆ X, U ∩ V = ∅ with U ∪ V = X. The space X is called connected if no separating
pair exists.
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Unless otherwise stated, we will implicitly assume all spaces considered are connected,
and usually compact.

Definition 11 (Path connected). Let X be a topological space. The space X is called path
connected if ∀x0, x1 ∈ X, ∃f : [0, 1]→ X, continuous, with f(0) = x0 and f(1) = x1.

The next definition (simply connected) serves to identify properties of a space in a
similar notion to the idea of convexity. Informally speaking, a space X is simply connected
if every closed curve (e.g., Jordan curve) in X can be contracted down to a point in X.

Definition 12 (Simply connected). A topological space X is simply connected if it is path
connected and its fundamental group π1(X, x0) is the trivial group (i.e., one element under
Path homotopy equivalence).

A.2 Real analysis

Following our brief discussion on topology, we immediately fall back into the standard
Euclidean setting and use the preceding definitions to formalize some intuitive ways of
describing different spaces.

Definition 13 (Smooth bounded domains, [53]). A domain U , that is bounded, is said
to have twice continuous differentiable boundary, denoted ∂U ∈ C2, if the boundary is
composed of finitely many pairwise disjoint, simple closed (Jordan), twice continuously
differentiable curves γ ∈ C2; i.e., γ : [0, 1]→ U .

Definition 14 (Exterior sphere condition, [75]). Let U be a domain with boundary ∂U .
The domain U is said to satisfy the (uniform) exterior sphere condition if there exists a
r > 0 s.t. for all x ∈ ∂U there exists a z ̸∈ U with d(x, z) = r and

B(z, r) ∩ U = ∅.

The domain U is said to satisfy the (uniform) Interior sphere condition if (intU)c, the
complement of the interior, satisfies the (uniform) exterior sphere condition.

Now we will define a very useful notation of how "rough" a function is on a given
interval. This plays an important role in being able to analyze certain boundary value
problems that popup when discussing diffusion processes.
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Definition 15 (Total variation, [2]). Let a, b ∈ R and f ∈ C([a, b],R). The total variation
of f over [a, b], denoted Va,b(f), is equal to

sup
(xt)nt=1
n∈N

{
n∑
t=1

|f(xt+1)− f(xt)|

}

over all partitions, (xt)t, a = x0 < x1 < · · · < xn−1 < xn = b for any n ≥ 0.

Definition 16 (Functions of bounded variation, [2]). Let a, b ∈ R and f ∈ C([a, b],R).
A function f : [a, b] → R is of bounded variation, denoted f ∈ BV [a, b], if there exists a
M ∈ R≥0 such that Va,b(f) ≤M .

Functions of bounded variations can be better understood through the characterization,
on compact intervals, of expressing them as the difference of two monotonic functions.

A.3 Differential geometry

As one of the core aspects of this thesis involves differential manifolds, we take time here
to develop the absolute bare essentials needed to understand the forthcoming work. Fun-
damentally, the construction of (differential) manifolds, at least those that we will be
considering, is centered around the definition of coordinate systems; these coordinate sys-
tems are occasionally referred to as curvilinear coordinates as, unlike standard Euclidean
coordinates, they may posses curvature. It is useful to picture coordinate systems of differ-
ential manifolds as being a spacial indexed functional basis, where the given basis changes
smoothly as you traverse the surface of the manifold.

Definition 17 (Smooth manifold, see [70]). Let (M, d) be a metric space and {ϕi : Ui →
Vi} be a collection of (topological) charts (that is, a collection of homeomorphisms) where
each Ui is open in Rk, and Vi is open in M, such that the sets {Vi} form an open cover
of M. Further suppose, the maps {ϕi} overlap with class C∞, meaning, ϕ−1i ◦ ϕj ∈ C∞
provided Vi∩Vj ̸= ∅. Then the metric space together with the set of charts, say (M, d, {ϕi}),
is a differentiable k-manifold of class C∞.

Note, there is some disagreement on the definition of charts between sources, partic-
ularly between topology textbooks [42, 70, 71] and those discussing differential geometry,
stating a chart as written above or in terms of the pre-image of the above. Additionally,
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I sometimes break from convention and write the local coordinate (functions) using sub-
scripts rather than superscripts since that notation is likely to be more familiar to readers
within the machine learning domain. Additionally, it is often assumed all manifolds of a
specified dimension are of class C∞ without it being explicitly stated.

We will now explore a quick example of how one might define a smooth manifold as
subspace of a higher dimensional Euclidean ambient space, which is guaranteed to exist,
for a sufficiently high dimensional ambient space, under the Nash embedding theorem [72].

Example: Smooth manifolds defined as subspaces A subset M ⊂ Rd is a k-
dimensional manifold in Rd, for d ≥ k, if and only if ∀x ∈ M there exists U ⊂ Rd, x ∈ U ,
an open set V ⊂ Rk, and a injective differentiable function f : V → Rn such that:

1. f(V ) =M∩ U ,
2. Jf (y), the Jacobian of f , has rank k for all y ∈ V ,
3. f−1 : f(V )→ V is continuous;

such a f is called a coordinate system around x.

Coordinate systems are the chosen basis of functions on that space and, as defined
above, correspond to a special case of having smooth charts, as in Definition 17, labeling
what points exist within local regions of the manifold.

We will primarily be concerned with the specific class of smooth manifolds that admit
inner products, specifically Riemannian manifolds.

Definition 18 (Riemannian manifold, see [7, 70, 24]). A Riemannian manifold, denoted
(M, g), is comprised of a smooth manifold M and a metric g which defines an inner
product over the tangent space(s) Tp(M) to any point p ∈M. The collection of all tangent
spaces, denoted TM, is called the tangent bundle.

Up to now, we have not discussed, at least in clear terms, how one can operate over
manifolds using charts, or how to go about multiplying and adding functions that take on
manifold values or even if such a notion is well posed. As Riemann manifolds are generally
not vector spaces (globally), vector operations, at least using local charts – which while
simple are not overly convent, are only defined locally. We now briefly provide such an
example.
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Example: manifold operations Suppose (M, g) is a Riemannian manifold equipped
with a chart ϕ ∈ C∞, if p = ϕ(x1, x2, . . . , xd) ∈ U the components x1, x2, . . . , xd are called
(local) coordinates of p w.r.t. the chart ϕ, more specifically, xj = ϕ−1j (p) and the coordinate
vector fields at p are defined using the differential

∂

∂xj
|p = dϕ(

∂

∂xj
|x)

where x = ϕ−1(p) and ∂
∂xj
|x is the j-th standard basis vector in Rd differentiated through

the chain rule. Now let’s consider f : R → M and g : R → M are paths along M, and
assume for all t ∈ R both f(t) = p and g(t) = q lie within V ⊆M (open) with local chart
ϕ : U ↪→ V ⊂ M with U ⊆ Rd open (as M is a smooth manifold it is assumed ϕ is a
diffeomorphism). Then, in local coordinates

x(t) = ϕ−1(f 1(t), f 2(t), . . . , fd(t)),

y(t) = ϕ−1(g1(t), g2(t), . . . , gd(t)).

we have, with some abuse of notation for compactness, that

f(t) + g(t) = ϕ(x1(t) + y1(t), . . . , xd(t) + yd(t)),

f(t)⊙ g(t) = ϕ(x1(t)y1(t), . . . , xd(t)yd(t)).

There are different approaches in which standard vector and differentiation operations
can be carried out on a manifold, which are used later on implicitly; .e.g., Riemannian
exponential map via geodesics when available, etc.1Continuing this example, if we instead
consider vector fields of the form f, g : R→ TM; i.e., for each t ∈ R f(t) ∈ TpM, then by
recalling the expression for coordinate vector fields, f takes on the local coordinate form

f(t) =
d∑
i=1

f i(t)
∂

∂xi
|p.

Then, provided f(t), g(t) ∈ TpM, we can define

(f + g)(t) =
d∑
i=1

(f i(t) + hi(t))
∂

∂xi
|p

(αf)(t) =
d∑
i=1

(αf i(t))
∂

∂xi
|p, ∀α ∈ R.

1It should also be noted in general the above construction has no guarantees of producing points that
lie on the manifold unless p, q ∈ V .
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Definition 19 (Constrained manifolds, see [24]). Let (M, g) be a Riemannian manifold
and {fi}i∈I a family of real-valued functions from C3(M,R). The manifold

D = {x ∈M | fi(x) ≤ 0,∀i ∈ I}

equipped with g is called a constrained manifold.

Associated to each Riemannian manifold is an isometry group, which consists of a set
of local (and global) isometries over the manifold.

Definition 20 (Manifold isometry group). Let (M, g) be a Riemannian manifold. The
isometry group of M, denoted IM , is a Lie group of diffeomorphisms s.t.,

IM ×M→M
(κ, p) 7→ Lκp

where Lκ is the (left) action of κ on the point p, and each κ ∈ IM preserves the pull back
κ∗g = g metric, and satisfies the conditions: ∀p ∈M

1. ∃e ∈ IM s.t., Lep = p
2. ∀κ1, κ2 ∈ IM, Lκ1,κ2p = Lκ1(Lκ2p).

Of particular interest is the manifold group of symmetric manifolds, as these manifolds
appear most commonly in physical applications and process attractive group properties.

Definition 21 (Symmetric manifolds, [31]). A Riemannian manifold, (M, g), is symmetric
(or globally symmetric) if ∀p ∈ M there exists an isometry κ : M → M such that2
dLκ|p = −id|p.

A.4 Reflected diffusion assumptions

Here we present some additional assumptions and results that are used implicitly within
Chapter 4. These results serve to characterize the kinds of domains are considered within
the aforementioned section, but do not aid the macroscopic delivery so were removed from
the main text.

2Here I opt for a characterization given on [31, p.6]
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Assumption 1 (Used in [58, 69, 5]). For a given domain D ⊆ X , there exists f ∈ C3(X ,R)
s.t.

D = {x ∈ X | f(x) < 0};
∂D = {x ∈ X | f(x) = 0};
∥∇f(x)∥2 ≥ 1 ,∀x ∈ ∂D ( or ∇f(x) ̸= 0)

and lastly D is outer-bounded – in the sense that ∃r ≥ 0 s.t. D ⊆ B(x, r) for some x ∈ D.

Lemma 3 (from [58]). If D ∈ C1 is an open domain that satisfies the uniform (exterior)
sphere condition for radius r > 0 equip with the vector field n : ∂D → T ∂D, defining the
unit outwards normal vectors along ∂D, then for R ≥ 1

2
r and ∀z ∈ D:

⟨n(x), x− z⟩+R⟨x− z, x− z⟩ ≥ 0.

Assumption 2. For the given smooth domain D that satisfies the uniform (exterior)
sphere condition, assume there exists a function ϕ ∈ C2

b (Rd) such that ∃α > 0, ∀x ∈ ∂D,
∀v ∈ n(x) with ∇ϕ(x) · v ≤ −αR, where R is from Lemma 3.

The results of Lemma 3 and Assumption 2 serve to describe the level of smoothness
required by the domain boundary w.r.t. the rate of change of the outward normal vector
field. The following assumption goes onto quantify the total change of the outwards vector
field evaluated over a covering of the domain boundary.

Assumption 3 (From [58].). For domain D, assume: ∃n ≥ 1, ∃α > 0, ∃R > 0 s.t.,

1. ∃a1, . . . , an ∈ Rd with ∥ai∥ = 1, ∀i;
2. ∃x1, . . . , xn ∈ ∂D with ∂D ⊆

⋃n
i=1B(xi, R) and ∀i, ∀x ∈ ∂D ∩ B(xi, 2R) we have

⟨n(x), ai⟩ ≥ α.
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Appendix B

Invariant diffusion additional material

B.1 Invariant FID computation

In Section 5.3 we report the Fréchet intercept distance (FID) [32] score of various models
on the datasets described in Section 5.3, respectively under C4 and D4 groups. In order
to ensure the FID score is invariant to these group operations applied to sample images,
without modifying the underlying InceptionV3 model – meaning the features the underlying
InceptionV3 model extracts from the reference dataset can be compared to those extracted
from the generated samples – we compute the mean score over all group elements. That
is, given a reference dataset Dref , a collection of generated samples Ds and a group G, and
if T(·) denotes the FID model evaluation that returns the mean and covariance statistics
of the features extracted from a dataset; i.e., T (Ds) = (µs,Σs). Then we compute FID by
first computing

TG(Dref ) =
1

|Dref |
∑
h∈G

T (AhDref ) = (µ̂, Σ̂),

where AhDref = {Ahx | x ∈ Dref}, and then we report the FID score as

FIDG = ∥TG(Dref )− T(Ds)∥.

This formulation ensures that the reference statistics used in computing the FID score
of a model is invariant to the group. All FID values reported in Table 5.1 and Table 5.2,
potentially excluding those reported by other authors, were calculated in the above fashion.
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B.2 Structure preserving diffusion model samples

Here, we include a collection of image samples from the models discussed within the text
across the various datasets in Section 5.3.

(a) Reference C4 rotated MNIST images. (b) Images generated from SP-GAN.

(c) Images generated from VP-SDE. (d) Images generated from SPDM+WT

(e) Images generated from SPDM+FA

Figure B.1: Sample comparison between models trained on the Rotated MNIST (28x28x1)
dataset.
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(a) Reference images.

(b) SP-GAN
samples.

(c) VP-SDE
samples.

(d) SPDM+WT
samples.

(e) SPDM+FA
samples.

Figure B.2: Sample comparison between models trained on the LYSTO (64x64x3) dataset.
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Appendix C

Extraneous experiments

C.1 Structure preserving pixel mask generation

Experiment: Fundus image mask generation One of the original tasks we proposed
as an evaluation of the models in Section 5.3 was to (conditionally) generate pixel (one-hot)
image masks for fundus images of human eyes utilizing the FIVES dataset. The FIVES
dataset [45] provides 800 fundus images at a resolution of (2048x2048x3) with matching
pixel-wise annotations of eye vasculature from patients with diabetic retinopathy (DR),
age-related macular degeneration (AMD), and a control with healthy eyes. This data is
helpful for performing certain medial diagnosis of eye disease. As the captured images are
circumscribed they exhibit natural SO(2) invariance.

Two methods where considered, both motivated by the memory constrains of at-
tempting to train a U-Net based diffusion model on images exceeding resolutions beyond
(128x128x3) in pixel-space on a NVIDIA L40S GPU (40GB).

First, we attempted scaling the images down to the resolution of (64x64x3) making
direct pixel-space training feasible. I implemented a DDBM+WT1 model and trained it
under the C4 group. However, this model was not able to produce reasonable results.
Suspecting the sparsity of the generation task was the issue, a DICE loss [94] regularizer
was added alongside the DSM, Eq. (2.7), loss to try improving the results. While this
generated initially promising results, the model quickly converged, reaching a MSE loss of
0.201 on the training data and 0.301 on the test data with a dice loss of 0.201 and 0.205
respectively, and did not end up delivering sufficiently detailed image masks; I suspect this
is due to the aliasing produced by the image scaling. Some example images are provided
in Fig. C.1a.

1The implementation of this can be found on a branch of the central repository given above for [65].
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(a) (b)

Figure C.1: (a) Reference and sample (64x64x3) images generated from DDBM+WT fun-
dus model. The first row is the condition followed by the reference mask, generated mask,
and lastly the MSE between the reference and generated masks. (b) Reference and sample
(512x512x3) image patches generated from latent space DDBM+WT fundus model. The
first row is the condition followed by the reference mask and lastly the generated mask.

Following this, we implemented a latent space diffusion model based on Stable Diffusion
v1-4 [83] accepting image patches of size (512x512x3) and operating on a latent space of
size (32x32x4). The VAE, was fine-tuned from a pre-trained checkpoint from the same
model and learned to accurately reconstruct both the fundus images and pixel masks down
to an accuracy of 1e−6; however, the DDBM+WT diffusion model struggled to produce
meaningful results, see Fig. C.1b. Again a DICE loss regularizer was added to training in
an attempt to correct this but this only marginally improved the initial results, and later
hampered performance by perturbing the DSM, Eq. (2.7), estimate of the score.
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